1,429 research outputs found

    An adaptive 5G multiservice and multitenant radio access network architecture

    Get PDF
    This article provides an overview on objectives and first results of the Horizon 2020 project 5G NOvel Radio Multiservice adaptive network Architecture (5GNORMA). With 5G NORMA, leading players in the mobile ecosystem aim to underpin Europe's leadership position in 5G. The key objective of 5G NORMA is to develop a conceptually novel, adaptive and future-proof 5G mobile network architecture. This architecture will allow for adapting the network to a wide range of service specific requirements, resulting in novel service-aware and context-aware end-to-end function chaining. The technical approach is based on an innovative concept of adaptive (de)composition and allocation of mobile network functions based on end-user requirements and infrastructure capabilities. At the same time, cost savings and faster time to market are to be expected by joint deployment of logically separated multiservice and multitenant networks on common hardware and other physical resources making use of traffic multiplexing gains. In this context architectural enablers such as network function virtualization and software-defined mobile networking will play a key role for introducing the needed flexible resource assignment to logical networks and specific virtual network functions.This work has been performed in the framework of the H2020-ICT-2014-2 project 5G NORMA

    Evaluating Performance of Serverless Virtualization

    Get PDF
    Abstract. The serverless computing has posed new challenges for cloud vendors that are difficult to solve with existing virtualization technologies. Maintaining security, resource isolation, backwards compatibility and scalability is extremely difficult when the platform should be able to deliver native performance. This paper contains a literature review of recently published results related to the performance of virtualization technologies such as KVM and Docker, and further reports a DESMET benchmarking evaluation against KVM and Docker, as well as Firecracker and gVisor, which are being used by Amazon Web Services and Google Cloud in their cloud services. The context for this research is coming from education, where students return their programming assignments into a source code repository system that further triggers automated tests and potentially other tasks against the submitted code. The used environment consists of several software components, such as web server, database and job executor, and thus represents a common architecture in web-based applications. The results of the research show that Docker is still the most performant virtualization technology amongst the selected ones. Additionally, Firecracker and gVisor perform better in some areas than KVM and thus are viable options for single-tenant environments. Lastly, applications that run untrusted code or have otherwise really high security requirements could potentially leverage from using either Firecracker or gVisor

    Live migration on ARM-based micro-datacentres

    Get PDF
    Live migration, underpinned by virtualisation technologies, has enabled improved manageability and fault tolerance for servers. However, virtualised server infrastructures suffer from significant processing overheads, system inconsistencies, security issues and unpredictable performance which makes them unsuitable for low-power and resource-constraint computing devices that processing latency-sensitive, 'Big-data'-type data. Consequently, we ask: 'How do we eliminate the overhead of virtualisation whilst still retaining its benefits?' Motivated by this question, we investigate a practical approach for a bare-metal live migration scheme for ARM-based instances low-power servers and edge devices. In this paper, we position ARM-based bare-metal live migration as a technique that will underpin the efficiency on edge-computing and on Micro-datacentres. We also introduce our early work on identifying three key technical challenges and discuss their solutions

    Containerization in Cloud Computing: performance analysis of virtualization architectures

    Get PDF
    La crescente adozione del cloud è fortemente influenzata dall’emergere di tecnologie che mirano a migliorare i processi di sviluppo e deployment di applicazioni di livello enterprise. L’obiettivo di questa tesi è analizzare una di queste soluzioni, chiamata “containerization” e di valutare nel dettaglio come questa tecnologia possa essere adottata in infrastrutture cloud in alternativa a soluzioni complementari come le macchine virtuali. Fino ad oggi, il modello tradizionale “virtual machine” è stata la soluzione predominante nel mercato. L’importante differenza architetturale che i container offrono ha portato questa tecnologia ad una rapida adozione poichè migliora di molto la gestione delle risorse, la loro condivisione e garantisce significativi miglioramenti in termini di provisioning delle singole istanze. Nella tesi, verrà esaminata la “containerization” sia dal punto di vista infrastrutturale che applicativo. Per quanto riguarda il primo aspetto, verranno analizzate le performances confrontando LXD, Docker e KVM, come hypervisor dell’infrastruttura cloud OpenStack, mentre il secondo punto concerne lo sviluppo di applicazioni di livello enterprise che devono essere installate su un insieme di server distribuiti. In tal caso, abbiamo bisogno di servizi di alto livello, come l’orchestrazione. Pertanto, verranno confrontate le performances delle seguenti soluzioni: Kubernetes, Docker Swarm, Apache Mesos e Cattle

    Container ecosystem based PaaS solution for Telco Cloud Analysis and Proposal

    Get PDF
    Telco over Cloud, Network Function Virtualization andSoftware Defined Networking are changing thetelecommunications industry landscape, morespecifically in the Telco Service Providers networkinfrastructure and systems, by introducing cloudcomputing, virtualization paradigms and softwareapproaches which are already in use and mature intraditional IT environments.This paper introduces the current telco cloud landscapeand latest developments. It subsequently proposes acontainer based telco app orchestration mechanism.The shift of the telco cloud landscape towardscontainers is imperative as the traditional VM basedNFV and SDN solutions are running into scalabilityand performance problems and have an impact ondelivery speed and efficient resource utilization.In the solution we have derived in our lab uses a clustercontainer orchestration mechanism using ApacheMesos. A custom framework is developed to handle theTelco specific (NFV) capabilities on top of thetraditional containers. This novel approach will helptelcos to provision tons of containers in a span of shortduration adhering to the QoS Requirements of theindustry

    Market driven elastic secure infrastructure

    Full text link
    In today’s Data Centers, a combination of factors leads to the static allocation of physical servers and switches into dedicated clusters such that it is difficult to add or remove hardware from these clusters for short periods of time. This silofication of the hardware leads to inefficient use of clusters. This dissertation proposes a novel architecture for improving the efficiency of clusters by enabling them to add or remove bare-metal servers for short periods of time. We demonstrate by implementing a working prototype of the architecture that such silos can be broken and it is possible to share servers between clusters that are managed by different tools, have different security requirements, and are operated by tenants of the Data Center, which may not trust each other. Physical servers and switches in a Data Center are grouped for a combination of reasons. They are used for different purposes (staging, production, research, etc); host applications required for servicing specific workloads (HPC, Cloud, Big Data, etc); and/or configured to meet stringent security and compliance requirements. Additionally, different provisioning systems and tools such as Openstack-Ironic, MaaS, Foreman, etc that are used to manage these clusters take control of the servers making it difficult to add or remove the hardware from their control. Moreover, these clusters are typically stood up with sufficient capacity to meet anticipated peak workload. This leads to inefficient usage of the clusters. They are under-utilized during off-peak hours and in the cases where the demand exceeds capacity the clusters suffer from degraded quality of service (QoS) or may violate service level objectives (SLOs). Although today’s clouds offer huge benefits in terms of on-demand elasticity, economies of scale, and a pay-as-you-go model yet many organizations are reluctant to move their workloads to the cloud. Organizations that (i) needs total control of their hardware (ii) has custom deployment practices (iii) needs to match stringent security and compliance requirements or (iv) do not want to pay high costs incurred from running workloads in the cloud prefers to own its hardware and host it in a data center. This includes a large section of the economy including financial companies, medical institutions, and government agencies that continue to host their own clusters outside of the public cloud. Considering that all the clusters may not undergo peak demand at the same time provides an opportunity to improve the efficiency of clusters by sharing resources between them. The dissertation describes the design and implementation of the Market Driven Elastic Secure Infrastructure (MESI) as an alternative to the public cloud and as an architecture for the lowest layer of the public cloud to improve its efficiency. It allows mutually non-trusting physically deployed services to share the physical servers of a data center efficiently. The approach proposed here is to build a system composed of a set of services each fulfilling a specific functionality. A tenant of the MESI has to trust only a minimal functionality of the tenant that offers the hardware resources. The rest of the services can be deployed by each tenant themselves MESI is based on the idea of enabling tenants to share hardware they own with tenants they may not trust and between clusters with different security requirements. The architecture provides control and freedom of choice to the tenants whether they wish to deploy and manage these services themselves or use them from a trusted third party. MESI services fit into three layers that build on each other to provide: 1) Elastic Infrastructure, 2) Elastic Secure Infrastructure, and 3) Market-driven Elastic Secure Infrastructure. 1) Hardware Isolation Layer (HIL) – the bottommost layer of MESI is designed for moving nodes between multiple tools and schedulers used for managing the clusters. It defines HIL to control the layer 2 switches and bare-metal servers such that tenants can elastically adjust the size of the clusters in response to the changing demand of the workload. It enables the movement of nodes between clusters with minimal to no modifications required to the tools and workflow used for managing these clusters. (2) Elastic Secure Infrastructure (ESI) builds on HIL to enable sharing of servers between clusters with different security requirements and mutually non-trusting tenants of the Data Center. ESI enables the borrowing tenant to minimize its trust in the node provider and take control of trade-offs between cost, performance, and security. This enables sharing of nodes between tenants that are not only part of the same organization by can be organization tenants in a co-located Data Center. (3) The Bare-metal Marketplace is an incentive-based system that uses economic principles of the marketplace to encourage the tenants to share their servers with others not just when they do not need them but also when others need them more. It provides tenants the ability to define their own cluster objectives and sharing constraints and the freedom to decide the number of nodes they wish to share with others. MESI is evaluated using prototype implementations at each layer of the architecture. (i) The HIL prototype implemented with only 3000 Lines of Code (LOC) is able to support many provisioning tools and schedulers with little to no modification; adds no overhead to the performance of the clusters and is in active production use at MOC managing over 150 servers and 11 switches. (ii) The ESI prototype builds on the HIL prototype and adds to it an attestation service, a provisioning service, and a deterministically built open-source firmware. Results demonstrate that it is possible to build a cluster that is secure, elastic, and fairly quick to set up. The tenant requires only minimum trust in the provider for the availability of the node. (iii) The MESI prototype demonstrates the feasibility of having a one-of-kind multi-provider marketplace for trading bare-metal servers where providers also use the nodes. The evaluation of the MESI prototype shows that all the clusters benefit from participating in the marketplace. It uses agents to trade bare-metal servers in a marketplace to meet the requirements of their clusters. Results show that compared to operating as silos individual clusters see a 50% improvement in the total work done; up to 75% improvement (reduction) in waiting for queues and up to 60% improvement in the aggregate utilization of the test bed. This dissertation makes the following contributions: (i) It defines the architecture of MESI allows mutually non-trusting tenants of the data center to share resources between clusters with different security requirements. (ii) Demonstrates that it is possible to design a service that breaks the silos of static allocation of clusters yet has a small Trusted Computing Base (TCB) and no overhead to the performance of the clusters. (iii) Provides a unique architecture that puts the tenant in control of its own security and minimizes the trust needed in the provider for sharing nodes. (iv) A working prototype of a multi-provider marketplace for bare-metal servers which is a first proof-of-concept that demonstrates that it is possible to trade real bare-metal nodes at practical time scales such that moving nodes between clusters is sufficiently fast to be able to get some useful work done. (v) Finally results show that it is possible to encourage even mutually non-trusting tenants to share their nodes with each other without any central authority making allocation decisions. Many smart, dedicated engineers and researchers have contributed to this work over the years. I have jointly led the efforts to design the HIL and the ESI layer; led the design and implementation of the bare-metal marketplace and the overall MESI architecture
    • …
    corecore