1,560 research outputs found

    High-resolution micro-CT for 3D infarct characterization and segmentation in mice stroke models

    Get PDF
    Characterization of brain infarct lesions in rodent models of stroke is crucial to assess stroke pathophysiology and therapy outcome. Until recently, the analysis of brain lesions was performed using two techniques: (1) histological methods, such as TTC (Triphenyltetrazolium chloride), a time-consuming and inaccurate process; or (2) MRI imaging, a faster, 3D imaging method, that comes at a high cost. In the last decade, high-resolution micro-CT for 3D sample analysis turned into a simple, fast, and cheaper solution. Here, we successfully describe the application of brain contrasting agents (Osmium tetroxide and inorganic iodine) for high-resolution micro-CT imaging for fine location and quantification of ischemic lesion and edema in mouse preclinical stroke models. We used the intraluminal transient MCAO (Middle Cerebral Artery Occlusion) mouse stroke model to identify and quantify ischemic lesion and edema, and segment core and penumbra regions at different time points after ischemia, by manual and automatic methods. In the transient-ischemic-attack (TIA) mouse model, we can quantify striatal myelinated fibers degeneration. Of note, whole brain 3D reconstructions allow brain atlas co-registration, to identify the affected brain areas, and correlate them with functional impairment. This methodology proves to be a breakthrough in the field, by providing a precise and detailed assessment of stroke outcomes in preclinical animal studies

    Use of functional neuroimaging and optogenetics to explore deep brain stimulation targets for the treatment of Parkinson's disease and epilepsy

    Get PDF
    Deep brain stimulation (DBS) is a neurosurgical therapy for Parkinson’s disease and epilepsy. In DBS, an electrode is stereotactically implanted in a specific region of the brain and electrical pulses are delivered using a subcutaneous pacemaker-like stimulator. DBS-therapy has proven to effectively suppress tremor or seizures in pharmaco-resistant Parkinson’s disease and epilepsy patients respectively. It is most commonly applied in the subthalamic nucleus for Parkinson’s disease, or in the anterior thalamic nucleus for epilepsy. Despite the rapidly growing use of DBS at these classic brain structures, there are still non-responders to the treatment. This creates a need to explore other brain structures as potential DBS-targets. However, research in patients is restricted mainly because of ethical reasons. Therefore, in order to search for potential new DBS targets, animal research is indispensable. Previous animal studies of DBS-relevant circuitry largely relied on electrophysiological recordings at predefined brain areas with assumed relevance to DBS therapy. Due to their inherent regional biases, such experimental techniques prevent the identification of less recognized brain structures that might be suitable DBS targets. Therefore, functional neuroimaging techniques, such as functional Magnetic Resonance Imaging and Positron Emission Tomography, were used in this thesis because they allow to visualize and to analyze the whole brain during DBS. Additionally, optogenetics, a new technique that uses light instead of electricity, was employed to manipulate brain cells with unprecedented selectivity

    Spatial encoding in primate hippocampus during free navigation.

    Get PDF
    The hippocampus comprises two neural signals-place cells and θ oscillations-that contribute to facets of spatial navigation. Although their complementary relationship has been well established in rodents, their respective contributions in the primate brain during free navigation remains unclear. Here, we recorded neural activity in the hippocampus of freely moving marmosets as they naturally explored a spatial environment to more explicitly investigate this issue. We report place cells in marmoset hippocampus during free navigation that exhibit remarkable parallels to analogous neurons in other mammalian species. Although θ oscillations were prevalent in the marmoset hippocampus, the patterns of activity were notably different than in other taxa. This local field potential oscillation occurred in short bouts (approximately .4 s)-rather than continuously-and was neither significantly modulated by locomotion nor consistently coupled to place-cell activity. These findings suggest that the relationship between place-cell activity and θ oscillations in primate hippocampus during free navigation differs substantially from rodents and paint an intriguing comparative picture regarding the neural basis of spatial navigation across mammals

    Cortical lamina-dependent blood volume changes in human brain at 7T

    Get PDF
    Cortical layer-dependent high (sub-millimeter) resolution functional magnetic resonance imaging (fMRI) in human or animal brain can be used to address questions regarding the functioning of cortical circuits, such as the effect of different afferent and efferent connectivities on activity in specific cortical layers. The sensitivity of gradient echo (GE) blood oxygenation level-dependent (BOLD) responses to large draining veins reduces its local specificity and can render the interpretation of the underlying laminar neural activity impossible. The application of the more spatially specific cerebral blood volume (CBV)-based fMRI in humans has been hindered by the low sensitivity of the noninvasive modalities available. Here, a vascular space occupancy (VASO) variant, adapted for use at high field, is further optimized to capture layer-dependent activity changes in human motor cortex at sub-millimeter resolution. Acquired activation maps and cortical profiles show that the VASO signal peaks in gray matter at 0.8–1.6 mm depth, and deeper compared to the superficial and vein-dominated GE-BOLD responses. Validation of the VASO signal change versus well-established iron-oxide contrast agent based fMRI methods in animals showed the same cortical profiles of CBV change, after normalization for lamina-dependent baseline CBV. In order to evaluate its potential of revealing small lamina-dependent signal differences due to modulations of the input-output characteristics, layer-dependent VASO responses were investigated in the ipsilateral hemisphere during unilateral finger tapping. Positive activation in ipsilateral primary motor cortex and negative activation in ipsilateral primary sensory cortex were observed. This feature is only visible in high-resolution fMRI where opposing sides of a sulcus can be investigated independently because of a lack of partial volume effects. Based on the results presented here, we conclude that VASO offers good reproducibility, high sensitivity and lower sensitivity than GE-BOLD to changes in larger vessels, making it a valuable tool for layer-dependent fMRI studies in humans

    The Digital Fish Library: Using MRI to Digitize, Database, and Document the Morphological Diversity of Fish

    Get PDF
    Museum fish collections possess a wealth of anatomical and morphological data that are essential for documenting and understanding biodiversity. Obtaining access to specimens for research, however, is not always practical and frequently conflicts with the need to maintain the physical integrity of specimens and the collection as a whole. Non-invasive three-dimensional (3D) digital imaging therefore serves a critical role in facilitating the digitization of these specimens for anatomical and morphological analysis as well as facilitating an efficient method for online storage and sharing of this imaging data. Here we describe the development of the Digital Fish Library (DFL, http://www.digitalfishlibrary.org), an online digital archive of high-resolution, high-contrast, magnetic resonance imaging (MRI) scans of the soft tissue anatomy of an array of fishes preserved in the Marine Vertebrate Collection of Scripps Institution of Oceanography. We have imaged and uploaded MRI data for over 300 marine and freshwater species, developed a data archival and retrieval system with a web-based image analysis and visualization tool, and integrated these into the public DFL website to disseminate data and associated metadata freely over the web. We show that MRI is a rapid and powerful method for accurately depicting the in-situ soft-tissue anatomy of preserved fishes in sufficient detail for large-scale comparative digital morphology. However these 3D volumetric data require a sophisticated computational and archival infrastructure in order to be broadly accessible to researchers and educators

    Optical projection tomography for whole organ imaging

    Get PDF
    In the past twenty years, far-reaching studies of molecular and cellular processes have reached a milestone in their maturation, and the knowledge from these studies was ready to apply at higher organizational levels. At that time, rodent models were long established. However, methods were inappropriate to image a whole rodent organ, such as the mouse brain, which drove the emergence of a new range of imaging techniques, later gathered under the name mesoscopy. Mesoscopic techniques filled a gap between classical microscopy and medical imaging techniques, such as magnetic resonance imaging, and X-ray computed tomography. They allow the acquisition of centimeter-sized samples. In this thesis, we focus on one of these mesoscopic imaging techniques called optical projection tomography, or OPT, and its potential application to Alzheimer's disease (AD) research. We review the fundamentals of OPT and describe the filtered back-projection algorithm, which is the primary tomographic reconstruction method of this technique. We also go through the implementation of OPT for whole mouse brain imaging, including sample preparation. We show that OPT is suitable to image the whole brain anatomy based on endogenous fluorescence, and the whole neural vasculature as well as amyloid plaques (a hallmark of AD) with adequate fluorescent markers. Then, we dwell on the characterization of OPT instruments. We give some insights on the instrument point spread function and discuss the influence of the number of projections on the quality of the reconstructed image. Afterward, we illustrate the application of OPT to study amyloidosis progression in a preliminary cross-sectional study, where we have used supervised learning to quantify the amyloid plaque load. In this study, we show that OPT can be used to quantify amyloidosis in whole mouse brains and that comparison between individuals of different age can be performed. Imaging of a whole mouse brain is unquestionably necessary. At this scale though, it has some constraints. We present the limitations of OPT, and we share how we think they can be circumvented by combining this modality with another microscopy technique, namely structured illumination microscopy. We see that this other microscopy technique has the potential to produce high-resolution zooms in selected regions of interest based on a prior OPT acquisition. The results presented in this work have led to the duplication of our OPT instrument in Lund University, and we hope they will help to foster advances in OPT and broaden its range of application. We also hope that this work will contribute to making OPT more accessible and user-friendly

    Human fetal whole-body postmortem microfocus computed tomographic imaging

    Get PDF
    Perinatal autopsy is the standard method for investigating fetal death; however, it requires dissection of the fetus. Human fetal microfocus computed tomography (micro-CT) provides a generally more acceptable and less invasive imaging alternative for bereaved parents to determine the cause of early pregnancy loss compared with conventional autopsy techniques. In this protocol, we describe the four main stages required to image fetuses using micro-CT. Preparation of the fetus includes staining with the contrast agent potassium triiodide and takes 3–19 d, depending on the size of the fetus and the time taken to obtain consent for the procedure. Setup for imaging requires appropriate positioning of the fetus and takes 1 h. The actual imaging takes, on average, 2 h 40 min and involves initial test scans followed by high-definition diagnostic scans. Postimaging, 3 d are required to postprocess the fetus, including removal of the stain, and also to undertake artifact recognition and data transfer. This procedure produces high-resolution isotropic datasets, allowing for radio-pathological interpretations to be made and long-term digital archiving for re-review and data sharing, where required. The protocol can be undertaken following appropriate training, which includes both the use of micro-CT techniques and handling of postmortem tissue

    Correlated Multimodal Imaging in Life Sciences:Expanding the Biomedical Horizon

    Get PDF
    International audienceThe frontiers of bioimaging are currently being pushed toward the integration and correlation of several modalities to tackle biomedical research questions holistically and across multiple scales. Correlated Multimodal Imaging (CMI) gathers information about exactly the same specimen with two or more complementary modalities that-in combination-create a composite and complementary view of the sample (including insights into structure, function, dynamics and molecular composition). CMI allows to describe biomedical processes within their overall spatio-temporal context and gain a mechanistic understanding of cells, tissues, diseases or organisms by untangling their molecular mechanisms within their native environment. The two best-established CMI implementations for small animals and model organisms are hardware-fused platforms in preclinical imaging (Hybrid Imaging) and Correlated Light and Electron Microscopy (CLEM) in biological imaging. Although the merits of Preclinical Hybrid Imaging (PHI) and CLEM are well-established, both approaches would benefit from standardization of protocols, ontologies and data handling, and the development of optimized and advanced implementations. Specifically, CMI pipelines that aim at bridging preclinical and biological imaging beyond CLEM and PHI are rare but bear great potential to substantially advance both bioimaging and biomedical research. CMI faces three mai
    corecore