766 research outputs found

    A Framework for a Self-Sustained Traffic Operations System Using V2V Communications

    Get PDF
    abstract: This study explores an innovative framework for a self-sustained traffic operations system using vehicle-to-vehicle (V2V) communications alone. The proposed framework is envisioned as the foundation to an alternative or supplemental traffic operation and management system, which could be particularly helpful under abnormal traffic conditions caused by unforeseen disasters and special events. Its two major components, a distributed traffic monitoring and platoon information aggregation system and a platoon-based automated intersection control system, are investigated in this study. The distributed traffic monitoring and platoon information aggregation system serves as the foundation. Specifically, each equipped vehicle, through the distributed protocols developed, keeps track of the average traffic density and speed within a certain range, flags itself as micro-discontinuity in traffic if appropriate, and cross-checks its flag status with its immediate up- and down-stream vehicles. The micro-discontinuity flags define vehicle groups with similar traffic states, for initiating and terminating traffic information aggregation. The impact of market penetration rate (MPR) is also investigated with a new methodology for performance evaluation under multiple traffic scenarios. In addition to MPR, the performance of the distributed traffic monitoring and platoon information aggregation system depends on the spatial distribution of equipped vehicles in the road network as well. The latter is affected by traffic dynamics. Traffic signal controls at intersections play a significant role in governing traffic dynamics and will in turn impact the distributed monitoring system. The performance of the monitoring framework is investigated with different g/C ratios under multiple traffic scenarios. With the distributed traffic monitoring and platoon information aggregation system, platoons can be dynamically identified on the network in real time. This enables a platoon-based automated intersection control system for connected and autonomous vehicles. An exploratory study on such a control system with two control stages are proposed. At Stage I, vehicles of each platoon will synchronize into a target speed through cooperative speed harmonization. Then, a platoon of vehicles with the same speed can be treated as a single vehicle for speed profile planning at Stage II. Its speed profile will be immediately determined given speed profiles of other platoons and the control goal.Dissertation/ThesisDoctoral Dissertation Civil, Environmental and Sustainable Engineering 201

    Whitepaper on New Localization Methods for 5G Wireless Systems and the Internet-of-Things

    Get PDF

    A quantum-inspired sensor consolidation measurement approach for cyber-physical systems.

    Get PDF
    Cyber-Physical System (CPS) devices interconnect to grab data over a common platform from industrial applications. Maintaining immense data and making instant decision analysis by selecting a feasible node to meet latency constraints is challenging. To address this issue, we design a quantum-inspired online node consolidation (QONC) algorithm based on a time-sensitive measurement reinforcement system for making decisions to evaluate the feasible node, ensuring reliable service and deploying the node at the appropriate position for accurate data computation and communication. We design the Angular-based node position analysis method to localize the node through rotation and t-gate to mitigate latency and enhance system performance. We formalize the estimation and selection of the feasible node based on quantum formalization node parameters (node contiguity, node optimal knack rate, node heterogeneity, probability of fusion variance error ratio). We design a fitness function to assess the probability of node fitness before selection. The simulation results convince us that our approach achieves an effective measurement rate of performance index by reducing the average error ratio from 0.17-0.22, increasing the average coverage ratio from 29% to 42%, and the qualitative execution frequency of services. Moreover, the proposed model achieves a 74.3% offloading reduction accuracy and a 70.2% service reliability rate compared to state-of-the-art approaches. Our system is scalable and efficient under numerous simulation frameworks

    Connectivity-Aware Routing in Vehicular Ad Hoc Networks

    Get PDF
    Vehicular ad hoc networks (VANETs) is a promising emerging technology that enables a wide range of appealing applications in road safety, traffic management, and passengers and driver comfort. The deployment of VANETs to enable vehicular Internet-based services and mobile data offloading is also envisioned to be a promising solution for the great demand of mobile Internet access. However, developing reliable and efficient routing protocols is one of the key challenges in VANETs due to the high vehicle mobility and frequent network topology changes. In this thesis, we highlight the routing challenges in VANETs with a focus on position-based routing (PBR), as a well-recognized routing paradigm in the vehicular environment. As the current PBR protocols do not support VANET users with connectivity information, our goal is to design an efficient routing protocol for VANETs that dynamically finds long life paths, with reduced delivery delay, and supports vehicles with instant information about connectivity to the infrastructure. The focus of this thesis will be on predicting vehicular mobility to estimate inter-vehicle link duration in order to support routing protocols with proactive connectivity information for a better routing performance. Via three stages to meet our goal, we propose three novel routing protocols to estimate both broad and comprehensive connectivities in VANETs: iCAR, iCAR-II, and D-CAR. iCAR supports VANET users with instant broad connectivity information to surrounding road intersections, iCAR-II uses cellular network channels for comprehensive connectivity awareness to Roadside Units (RSUs), and finally D-CAR supports users with instant comprehensive connectivity information without the assistance of other networks. Detailed analysis and simulation based evaluations of our proposed protocols demonstrate the validity of using VANETs for Internet-based services and mobile data offloading in addition to the significant improvement of VANETs performance in terms of packet delivery ratio and end-to-end delay

    Recent Advances in Indoor Localization: A Survey on Theoretical Approaches and Applications

    Get PDF
    Nowadays, the availability of the location information becomes a key factor in today’s communications systems for allowing location based services. In outdoor scenarios, the Mobile Terminal (MT) position is obtained with high accuracy thanks to the Global Positioning System (GPS) or to the standalone cellular systems. However, the main problem of GPS or cellular systems resides in the indoor environment and in scenarios with deep shadowing effect where the satellite or cellular signals are broken. In this paper, we will present a review over different technologies and concepts used to improve indoor localization. Additionally, we will discuss different applications based on different localization approaches. Finally, comprehensive challenges in terms of accuracy, cost, complexity, security, scalability, etc. are presente

    PORTABLE WEIGH-IN-MOTION FOR PAVEMENT DESIGN - PHASES 1 AND 2

    Get PDF
    Keeping Oklahoma's roadways, highways, and bridges in good condition is necessary to our state’s safety and to avoid expenditures in billions of dollars each year for road repairs and replacement. According to a study done by state of Oregon in 2009, heavy vehicles account for 79% (or 60million)ofannualexpendituresrequiredforroadwayrepaving.Likewise,theywerealsoresponsiblefor66.860 million) of annual expenditures required for roadway repaving. Likewise, they were also responsible for 66.8% (or 27 million) of pavement and shoulder reconstruction; 65.1% (or 145million)ofpavementandshoulderrehabilitations;and61.5145 million) of pavement and shoulder rehabilitations; and 61.5% (or 140 million) of pavement maintenance. To weigh traveling trucks, the state of Oklahoma has installed 20 permanent Weigh-in-Motion (WIM) sites. Expanding site coverage to include additional roadways and highways improves data accuracy; however, it requires significant roadside construction and costly infrastructure support. This report presents deployment results of a novel portable WIM system and compares captured data with that collected at a nearby permanent WIM system. Design, development, and road-installation details of the heavy-vehicle centric, portable WIM system are also provided. Outcomes demonstrate that the portable system maintains data quality but for short intervals and provides a viable alternative to permanent systems at merely 10 percent of the cost. The portable WIM system uses off-the-shelf components and commercially available WIM controllers. The WIM controller used was IRD iSINC Lite. The fabricated portable system could be promoted as an alternative WIM monitoring solution to permanent WIM systems and/or static scale stations, both of which are extremely expensive to install on highways. The portable WIM uses RoadTrax BL piezoelectric class-1 sensors, galvanized metal fixtures equipped with pocket tapes to house the sensors, and a trailer with cabinet to house WIM electronics, batteries, and REECE device for real-time monitoring. The system is solar powered with three 100-Watt panels, and it costs roughly $20,000.Final report, October 2011-October 2014N

    Portable Multi-Sensor System for Intersection Safety Performance Assessment, July 2018

    Get PDF
    State departments of transportation (DOTs) and city municipal agencies install a large number of roadside cameras on freeways and arterials for surveillance tasks. It is estimated that there will be approximately a billion cameras worldwide by 2020. However, most of these cameras are used for manual surveillance purposes only. The main objective of this study was to investigate the use of these cameras as a sensor for traffic state estimation. The scope of this project involved detecting vehicles, tracking them, and estimating their speeds. The research team adopted a tracking-by-detection framework for this study. The object detection task was performed using you only look once version 3 (YOLOv3) model architecture and the tracking was performed using the simple online and realtime tracking (SORT) algorithm. The team tested the framework on videos collected from three intersections in Ames, Iowa. The combined detection and tracking was performed at approximately 40 frames per second (fps) using GeForce GTX 1080 GPU, enabling it to be implemented online easily. Camera calibration was performed by finding the edges of moving vehicles to automatically detect the vanishing points, and the scale factor was determined manually from a known fixed distance in the image and the real world. Although this methodology performed vanishing point determination automatically without any manual intervention, the speed estimation error came out to be quite high (~13 mph). The error can be reduced significantly by performing calibration and scale factor determination fully manually. However, since it requires full manual intervention, it is difficult to scale the algorithm across multiple cameras. In the future, the detection task can be improved by training the model on a larger dataset, and further work can be done to improve speed estimation by extending automatic camera calibration to automatic scale estimation, which would improve accuracy simultaneously

    Cooperative Radio Communications for Green Smart Environments

    Get PDF
    The demand for mobile connectivity is continuously increasing, and by 2020 Mobile and Wireless Communications will serve not only very dense populations of mobile phones and nomadic computers, but also the expected multiplicity of devices and sensors located in machines, vehicles, health systems and city infrastructures. Future Mobile Networks are then faced with many new scenarios and use cases, which will load the networks with different data traffic patterns, in new or shared spectrum bands, creating new specific requirements. This book addresses both the techniques to model, analyse and optimise the radio links and transmission systems in such scenarios, together with the most advanced radio access, resource management and mobile networking technologies. This text summarises the work performed by more than 500 researchers from more than 120 institutions in Europe, America and Asia, from both academia and industries, within the framework of the COST IC1004 Action on "Cooperative Radio Communications for Green and Smart Environments". The book will have appeal to graduates and researchers in the Radio Communications area, and also to engineers working in the Wireless industry. Topics discussed in this book include: • Radio waves propagation phenomena in diverse urban, indoor, vehicular and body environments• Measurements, characterization, and modelling of radio channels beyond 4G networks• Key issues in Vehicle (V2X) communication• Wireless Body Area Networks, including specific Radio Channel Models for WBANs• Energy efficiency and resource management enhancements in Radio Access Networks• Definitions and models for the virtualised and cloud RAN architectures• Advances on feasible indoor localization and tracking techniques• Recent findings and innovations in antenna systems for communications• Physical Layer Network Coding for next generation wireless systems• Methods and techniques for MIMO Over the Air (OTA) testin
    • …
    corecore