3,485 research outputs found

    A rapid prototyping/artificial intelligence approach to space station-era information management and access

    Get PDF
    Applications of rapid prototyping and Artificial Intelligence techniques to problems associated with Space Station-era information management systems are described. In particular, the work is centered on issues related to: (1) intelligent man-machine interfaces applied to scientific data user support, and (2) the requirement that intelligent information management systems (IIMS) be able to efficiently process metadata updates concerning types of data handled. The advanced IIMS represents functional capabilities driven almost entirely by the needs of potential users. Space Station-era scientific data projected to be generated is likely to be significantly greater than data currently processed and analyzed. Information about scientific data must be presented clearly, concisely, and with support features to allow users at all levels of expertise efficient and cost-effective data access. Additionally, mechanisms for allowing more efficient IIMS metadata update processes must be addressed. The work reported covers the following IIMS design aspects: IIMS data and metadata modeling, including the automatic updating of IIMS-contained metadata, IIMS user-system interface considerations, including significant problems associated with remote access, user profiles, and on-line tutorial capabilities, and development of an IIMS query and browse facility, including the capability to deal with spatial information. A working prototype has been developed and is being enhanced

    6502 emulator on FPGA

    Get PDF
    6502 microprocessor was once used in almost all of the microcomputer in the 80s, including the Apple II lines of computer, the Commodore PET, the Commodore 64, the Atari 8-bit series and even on the Nintendo Entertainment System (NES) video game console. The objective of this project is to emulate the once famous 6502 microprocessor onto a FPGA chip. The FPGA-based 6502 microprocessor had to emulate the functionality of a real 6502 microprocessor. Accurate pinouts emulation is desired but not a must. The 6502 assembly language is easy to learn and building a computer based on this microprocessor requires very few parts, thus making this project a great experiential learning process. The scope of this project requires the student to have an in-depth understanding on computer system architecture, especially on 6502 architecture; V erilog to understand existing 6502 source code from Bird Computer and also FPGA development process (synthesis tools) to transfer the Verilog code to the FPGA chip. Thus far, the resources and information on 6502 microprocessor looks promising. The student earlier scope was to come up with the 6502 code in Verilog HDL, but as there is available code from Bird Computer (State Machine coded) so the student had chanced his objectives to understand the existing code and implement it on FPGA only. But as along the way, problems occur on hardware implementation, focus had been switched again to simulate the existing code or ALU or simple processor to build up student understanding and for documentation for future project expansion. To test the functionality of the 6502 system, the student will either find existing application or come up with simple program to run using the FPGA-based 6502 system

    Parkinson\u27s Freezing-of-Gait Device

    Get PDF

    Trade-off analysis and design of a Hydraulic Energy Scavenger

    Get PDF
    In the last years there has been a growing interest in intelligent, autonomous devices for household applications. In the near future this technology will be part of our society; sensing and actuating will be integrated in the environment of our houses by means of energy scavengers and wireless microsystems. These systems will be capable of monitoring the environment, communicating with people and among each other, actuating and supplying themselves independently. This concept is now possible thanks to the low power consumption of electronic devices and accurate design of energy scavengers to harvest energy from the surrounding environment. In principle, an autonomous device comprises three main subsystems: an energy scavenger, an energy storage unit and an operational stage. The energy scavenger is capable of harvesting very small amounts of energy from the surroundings and converting it into electrical energy. This energy can be stored in a small storage unit like a small battery or capacitor, thus being available as a power supply. The operational stage can perform a variety of tasks depending on the application. Inside its application range, this kind of system presents several advantages with respect to regular devices using external energy supplies. They can be simpler to apply as no external connections are needed; they are environmentally friendly and might be economically advantageous in the long term. Furthermore, their autonomous nature permits the application in locations where the local energy grid is not present and allows them to be ‘hidden' in the environment, being independent from interaction with humans. In the present paper an energy-harvesting system used to supply a hydraulic control valve of a heating system for a typical residential application is studied. The system converts the kinetic energy from the water flow inside the pipes of the heating system to power the energy scavenger. The harvesting unit is composed of a hydraulic turbine that converts the kinetic energy of the water flow into rotational motion to drive a small electric generator. The design phases comprise a trade-off analysis to define the most suitable hydraulic turbine and electric generator for the energy scavenger, and an optimization of the components to satisfy the systems specification

    New Technologies for Space Avionics, 1993

    Get PDF
    The report reviews a 1993 effort that investigated issues associated with the development of requirements, with the practice of concurrent engineering and with rapid prototyping, in the development of a next-generation Reaction Jet Drive Controller. This report details lessons learned, the current status of the prototype, and suggestions for future work. The report concludes with a discussion of the vision of future avionics architectures based on the principles associated with open architectures and integrated vehicle health management

    Automated in-row weed trimmer

    Get PDF
    The Automated In-Row Weed Trimmer, or AIRWT, is a weed removal system designed to be used in vineyards in order to enable safe and e cient removal of weeds while preventing damage to the vines. The goal of the system is to reduce the need for the use of manual labor and herbicides while improving production rates of grapes by automating the weed removal process at vineyards. By implementing an automated system for weed removal, the team aims to resolve ethical issues in food production, primarily those surrounding human labor, environmental friendliness, and social sustainability. The focus of this report is to explore in depth the AIRWT system concept as well as its subsystems, in addition to reviewing its product development cycle

    Electronics and control technology

    Get PDF
    Until recently, there was no requirement to learn electronics and control technology in the New Zealand school curriculum. Apart from isolated pockets of teaching based on the enthusiasm of individual teachers, there is very little direct learning of electronics in New Zealand primary or secondary schools. The learning of electronics is located in tertiary vocational training programmes. Thus, few school students learn about electronics and few school teachers have experience in teaching it. Lack of experience with electronics (other than using its products) has contributed to a commonly held view of electronics as out of the control and intellectual grasp of the average person; the domain of the engineer, programmer and enthusiast with his or her special aptitude. This need not be true, but teachers' and parents' lack of experience with electronics is in danger of denying young learners access to the mainstream of modern technology

    An overview of decision table literature 1982-1995.

    Get PDF
    This report gives an overview of the literature on decision tables over the past 15 years. As much as possible, for each reference, an author supplied abstract, a number of keywords and a classification are provided. In some cases own comments are added. The purpose of these comments is to show where, how and why decision tables are used. The literature is classified according to application area, theoretical versus practical character, year of publication, country or origin (not necessarily country of publication) and the language of the document. After a description of the scope of the interview, classification results and the classification by topic are presented. The main body of the paper is the ordered list of publications with abstract, classification and comments.

    Development of an Embedded RTU FDD using Open-Source Monitoring and Control Platform

    Get PDF
    Previous research on automated fault detection and diagnostics (FDD) for HVAC systems has shown promising benefits like earlier detection and more accurate isolation of different faults. While most researchers, equipment manufacturers, and policymakers agree that HVAC system FDD is important and has the potential to reduce significant energy waste due to faulty system operation, widespread adoption of these tools has been slow. An automated fault detection and diagnosis system has been developed for packaged (rooftop) air conditioners based on the VOLTTRONTM monitoring and controls framework developed by the Department of Energy. The system implements a virtual-sensor-based FDD methodology capable of isolating common rooftop unit faults such as improper refrigerant charge level, heat exchanger fouling, liquid-line restrictions, and compressor valve leakage. A fault impact evaluation component has also been implemented in order to determine the relative impact that faults have on system performance. This is accomplished using virtual sensor outputs and manufacturers’ performance map reference models for performance indices such as cooling capacity and COP. This system has been implemented using low-cost electronics components and was be tested using a 5-ton RTU in a laboratory environment. In this work, a high-level overview of the automated rooftop unit (RTU) FDD system structure will be presented detailing how individual software agents interact along with a description of the computational and network requirements of the system. Alternative system architectures will also be discussed in comparison to the hybrid system presented. A review of the FDD algorithms is also presented that details the virtual sensors implementations along with the methodology to detect, diagnose, and evaluate different faults.  Finally, the performance of the FDD system will be demonstrated using laboratory test data collected for a 4-ton RTU with micro-channel condenser. The goal of this research is to produce a field ready FDD tool for RTUs that can be used to show the benefits of FDD in real systems. Ultimately, the software implementation (using Python) and hardware designs of all the systems components will be released under an open source license in an effort to reduce the engineering effort required by equipment manufacturers interested in a complete AFDD solution

    Sustainable Design: Using Physical Prototypes to Most Benefit Design Students and Environment?

    Get PDF
    After reviewing the main environmental areas of concern today, this paper will focus on waste management within the area of sustainability. For many years, as part of the design process, physical prototypes were a necessary. This was in order to prove a design‘s functionality and safety. They were expensive, time consuming and, by todays standards wastful. Often, once production began, they were scrapped. The necessity of a physical prototype outweighed all environmental considerations. In the 21st century, with the growth in Computer Aided Engineering (CAE), physical prototypes have nearly been replaced with virtual prototypes. The evidence is overwhelming as to the benfits of virtual prototypes to designers, designs and the environment. This paper will research and identify an area where physical prototypes are still beneficial, that of educating design engineers. A survey of mechanical engineering students over 5 years will identify a significant difference in the basic engineering knowledge of full-time engineering students when compared with their part-time colleagues. The use of physical prototypes can help reduce this difference. This paper argues that physical prototypes, under certain conditions, can reduce waste and still be sustainable
    corecore