1,976 research outputs found

    High speed VLSI architectures for DWT in biometric image compression: A study

    Get PDF
    AbstractBiometrics is a field that navigates through a vast database and extracts only the qualifying data to accelerate the processes of biometric authentication/recognition. Image compression is a vital part of the process. Various Very Large Scale Integration (VLSI) architectures have emerged to satisfy the real time requirements of the online processing of the applications. This paper studies various techniques that help in realizing the fast operation of the transform stage of the image compression processes. Various parameters that may involve in optimizations for high speed like computing time, silicon area, memory size etc are considered in the survey

    Efficient reconfigurable architectures for 3D medical image compression

    Get PDF
    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University.Recently, the more widespread use of three-dimensional (3-D) imaging modalities, such as magnetic resonance imaging (MRI), computed tomography (CT), positron emission tomography (PET), and ultrasound (US) have generated a massive amount of volumetric data. These have provided an impetus to the development of other applications, in particular telemedicine and teleradiology. In these fields, medical image compression is important since both efficient storage and transmission of data through high-bandwidth digital communication lines are of crucial importance. Despite their advantages, most 3-D medical imaging algorithms are computationally intensive with matrix transformation as the most fundamental operation involved in the transform-based methods. Therefore, there is a real need for high-performance systems, whilst keeping architectures exible to allow for quick upgradeability with real-time applications. Moreover, in order to obtain efficient solutions for large medical volumes data, an efficient implementation of these operations is of significant importance. Reconfigurable hardware, in the form of field programmable gate arrays (FPGAs) has been proposed as viable system building block in the construction of high-performance systems at an economical price. Consequently, FPGAs seem an ideal candidate to harness and exploit their inherent advantages such as massive parallelism capabilities, multimillion gate counts, and special low-power packages. The key achievements of the work presented in this thesis are summarised as follows. Two architectures for 3-D Haar wavelet transform (HWT) have been proposed based on transpose-based computation and partial reconfiguration suitable for 3-D medical imaging applications. These applications require continuous hardware servicing, and as a result dynamic partial reconfiguration (DPR) has been introduced. Comparative study for both non-partial and partial reconfiguration implementation has shown that DPR offers many advantages and leads to a compelling solution for implementing computationally intensive applications such as 3-D medical image compression. Using DPR, several large systems are mapped to small hardware resources, and the area, power consumption as well as maximum frequency are optimised and improved. Moreover, an FPGA-based architecture of the finite Radon transform (FRAT)with three design strategies has been proposed: direct implementation of pseudo-code with a sequential or pipelined description, and block random access memory (BRAM)- based method. An analysis with various medical imaging modalities has been carried out. Results obtained for image de-noising implementation using FRAT exhibits promising results in reducing Gaussian white noise in medical images. In terms of hardware implementation, promising trade-offs on maximum frequency, throughput and area are also achieved. Furthermore, a novel hardware implementation of 3-D medical image compression system with context-based adaptive variable length coding (CAVLC) has been proposed. An evaluation of the 3-D integer transform (IT) and the discrete wavelet transform (DWT) with lifting scheme (LS) for transform blocks reveal that 3-D IT demonstrates better computational complexity than the 3-D DWT, whilst the 3-D DWT with LS exhibits a lossless compression that is significantly useful for medical image compression. Additionally, an architecture of CAVLC that is capable of compressing high-definition (HD) images in real-time without any buffer between the quantiser and the entropy coder is proposed. Through a judicious parallelisation, promising results have been obtained with limited resources. In summary, this research is tackling the issues of massive 3-D medical volumes data that requires compression as well as hardware implementation to accelerate the slowest operations in the system. Results obtained also reveal a significant achievement in terms of the architecture efficiency and applications performance.Ministry of Higher Education Malaysia (MOHE), Universiti Tun Hussein Onn Malaysia (UTHM) and the British Counci

    Development of Lifting-based VLSI Architectures for Two-Dimensional Discrete Wavelet Transform

    Get PDF
    Two-dimensional discrete wavelet transform (2-D DWT) has evolved as an essential part of a modem compression system. It offers superior compression with good image quality and overcomes disadvantage of the discrete cosine transform, which suffers from blocks artifacts that reduces the quality of the inage. The amount of computations involve in 2-D DWT is enormous and cannot be processed by generalpurpose processors when real-time processing is required. Th·"efore, high speed and low power VLSI architecture that computes 2-D DWT effectively is needed. In this research, several VLSI architectures have been developed that meets real-time requirements for 2-D DWT applications. This research iaitially started off by implementing a software simulation program that decorrelates the original image and reconstructs the original image from the decorrelated image. Then, based on the information gained from implementing the simulation program, a new approach for designing lifting-based VLSI architectures for 2-D forward DWT is introduced. As a result, two high performance VLSI architectures that perform 2-D DWT for 5/3 and 9/7 filters are developed based on overlapped and nonoverlapped scan methods. Then, the intermediate architecture is developed, which aim a·: reducing the power consumption of the overlapped areas without using the expensive line buffer. In order to best meet real-time applications of 2-D DWT with demanding requirements in terms of speed and throughput parallelism is explored. The single pipelined intermediate and overlapped architectures are extended to 2-, 3-, and 4-parallel architectures to achieve speed factors of 2, 3, and 4, respectively. To further demonstrate the effectiveness of the approach single and para.llel VLSI architectures for 2-D inverse discrete wavelet transform (2-D IDWT) are developed. Furthermore, 2-D DWT memory architectures, which have been overlooked in the literature, are also developed. Finally, to show the architectural models developed for 2-D DWT are simple to control, the control algorithms for 4-parallel architecture based on the first scan method is developed. To validate architectures develcped in this work five architectures are implemented and simulated on Altera FPGA. In compliance with the terms of the Copyright Act 1987 and the IP Policy of the university, the copyright of this thesis has been reassigned by the author to the legal entity of the university, Institute of Technology PETRONAS Sdn bhd. Due acknowledgement shall always be made of the use of any material contained in, or derived from, this thesis

    Mengenal pasti tahap pengetahuan pelajar tahun akhir Ijazah Sarjana Muda Kejuruteraan di KUiTTHO dalam bidang keusahawanan dari aspek pengurusan modal

    Get PDF
    Malaysia ialah sebuah negara membangun di dunia. Dalam proses pembangunan ini, hasrat negara untuk melahirkan bakal usahawan beijaya tidak boleh dipandang ringan. Oleh itu, pengetahuan dalam bidang keusahawanan perlu diberi perhatian dengan sewajarnya; antara aspek utama dalam keusahawanan ialah modal. Pengurusan modal yang tidak cekap menjadi punca utama kegagalan usahawan. Menyedari hakikat ini, kajian berkaitan Pengurusan Modal dijalankan ke atas 100 orang pelajar Tahun Akhir Kejuruteraan di KUiTTHO. Sampel ini dipilih kerana pelajar-pelajar ini akan menempuhi alam pekeijaan di mana mereka boleh memilih keusahawanan sebagai satu keijaya. Walau pun mereka bukanlah pelajar dari jurusan perniagaan, namun mereka mempunyai kemahiran dalam mereka cipta produk yang boleh dikomersialkan. Hasil dapatan kajian membuktikan bahawa pelajar-pelajar ini berminat dalam bidang keusahawanan namun masih kurang pengetahuan tentang pengurusan modal terutamanya dalam menentukan modal permulaan, pengurusan modal keija dan caracara menentukan pembiayaan kewangan menggunakan kaedah jualan harian. Oleh itu, satu garis panduan Pengurusan Modal dibina untuk memberi pendedahan kepada mereka

    Discrete Wavelet Transforms

    Get PDF
    The discrete wavelet transform (DWT) algorithms have a firm position in processing of signals in several areas of research and industry. As DWT provides both octave-scale frequency and spatial timing of the analyzed signal, it is constantly used to solve and treat more and more advanced problems. The present book: Discrete Wavelet Transforms: Algorithms and Applications reviews the recent progress in discrete wavelet transform algorithms and applications. The book covers a wide range of methods (e.g. lifting, shift invariance, multi-scale analysis) for constructing DWTs. The book chapters are organized into four major parts. Part I describes the progress in hardware implementations of the DWT algorithms. Applications include multitone modulation for ADSL and equalization techniques, a scalable architecture for FPGA-implementation, lifting based algorithm for VLSI implementation, comparison between DWT and FFT based OFDM and modified SPIHT codec. Part II addresses image processing algorithms such as multiresolution approach for edge detection, low bit rate image compression, low complexity implementation of CQF wavelets and compression of multi-component images. Part III focuses watermaking DWT algorithms. Finally, Part IV describes shift invariant DWTs, DC lossless property, DWT based analysis and estimation of colored noise and an application of the wavelet Galerkin method. The chapters of the present book consist of both tutorial and highly advanced material. Therefore, the book is intended to be a reference text for graduate students and researchers to obtain state-of-the-art knowledge on specific applications

    Hardware implementation of daubechies wavelet transforms using folded AIQ mapping

    Get PDF
    The Discrete Wavelet Transform (DWT) is a popular tool in the field of image and video compression applications. Because of its multi-resolution representation capability, the DWT has been used effectively in applications such as transient signal analysis, computer vision, texture analysis, cell detection, and image compression. Daubechies wavelets are one of the popular transforms in the wavelet family. Daubechies filters provide excellent spatial and spectral locality-properties which make them useful in image compression. In this thesis, we present an efficient implementation of a shared hardware core to compute two 8-point Daubechies wavelet transforms. The architecture is based on a new two-level folded mapping technique, an improved version of the Algebraic Integer Quantization (AIQ). The scheme is developed on the factorization and decomposition of the transform coefficients that exploits the symmetrical and wrapping structure of the matrices. The proposed architecture is parallel, pipelined, and multiplexed. Compared to existing designs, the proposed scheme reduces significantly the hardware cost, critical path delay and power consumption with a higher throughput rate. Later, we have briefly presented a new mapping scheme to error-freely compute the Daubechies-8 tap wavelet transform, which is the next transform of Daubechies-6 in the Daubechies wavelet series. The multidimensional technique maps the irrational transformation basis coefficients with integers and results in considerable reduction in hardware and power consumption, and significant improvement in image reconstruction quality

    DESIGN AND IMPLEMENTATION OF LIFTING BASED DAUBECHIES WAVELET TRANSFORMS USING ALGEBRAIC INTEGERS

    Get PDF
    Over the past few decades, the demand for digital information has increased drastically. This enormous demand poses serious difficulties on the storage and transmission bandwidth of the current technologies. One possible solution to overcome this approach is to compress the amount of information by discarding all the redundancies. In multimedia technology, various lossy compression techniques are used to compress the raw image data to facilitate storage and to fit the transmission bandwidth. In this thesis, we propose a new approach using algebraic integers to reduce the complexity of the Daubechies-4 (D4) and Daubechies-6 (D6) Lifting based Discrete Wavelet Transforms. The resulting architecture is completely integer based, which is free from the round-off error that is caused in floating point calculations. The filter coefficients of the two transforms of Daubechies family are individually converted to integers by multiplying it with value of 2x, where, x is a random value selected at a point where the quantity of losses is negligible. The wavelet coefficients are then quantized using the proposed iterative individual-subband coding algorithm. The proposed coding algorithm is adopted from the well-known Embedded Zerotree Wavelet (EZW) coding. The results obtained from simulation shows that the proposed coding algorithm proves to be much faster than its predecessor, and at the same time, produces good Peak Signal to Noise Ratio (PSNR) at very low bit rates. Finally, the two proposed transform architectures are implemented on Virtex-E Field Programmable Gate Array (FPGA) to test the hardware cost (in terms of multipliers, adders and registers) and throughput rate. From the synthesis results, we see that the proposed algorithm has low hardware cost and a high throughput rate

    Complexity Reduction and Fast Algorithm for 2-D Integer Discrete Wavelet Transform Using Symmetric Mask-Based Scheme

    Get PDF
    [[abstract]]Wavelet coding has been shown to be better than discrete cosine transform (DCT) in image/video processing. Moreover, it has the feature of scalability, which is involved in modern video standards. This work presents novel algorithms, namely 2-D symmetric mask-based discrete wavelet transform (SMDWT), to improve the critical issue of the 2-D lifting-based discrete wavelet transform (LDWT), and then obtains the benefit of low latency, high-speed operation, and low temporal memory. The SMDWT also has the advantages of high-performance embedded periodic extension boundary treatment, reduced complexity, regular signal coding, short critical path, reduced latency time, and independent subband coding processing. Moreover, the 2-D lifting-based DWT performance can also be easily improved by exploiting appropriate parallel method inherently in SMDWT. Comparing with the normal 2-D 5/3 integer lifting-based DWT the proposed method significantly improves lifting-based latency and complexity in 2-D DWT without degradation in image quality. The algorithm can be applied to real-time image/video applications, such as JPEG2000, MPEG-4 still texture object decoding, and wavelet-based Scalable Video Coding (SVC).[[sponsorship]]IEEE Computer Society, U.S.A.[[notice]]需補會議地點[[conferencetype]]國際[[conferencedate]]20071210~2007121
    • …
    corecore