2,889 research outputs found

    The 1992 4th NASA SERC Symposium on VLSI Design

    Get PDF
    Papers from the fourth annual NASA Symposium on VLSI Design, co-sponsored by the IEEE, are presented. Each year this symposium is organized by the NASA Space Engineering Research Center (SERC) at the University of Idaho and is held in conjunction with a quarterly meeting of the NASA Data System Technology Working Group (DSTWG). One task of the DSTWG is to develop new electronic technologies that will meet next generation electronic data system needs. The symposium provides insights into developments in VLSI and digital systems which can be used to increase data systems performance. The NASA SERC is proud to offer, at its fourth symposium on VLSI design, presentations by an outstanding set of individuals from national laboratories, the electronics industry, and universities. These speakers share insights into next generation advances that will serve as a basis for future VLSI design

    A wave pipeline-based WCDMA multipath searcher for a high speed operation

    Get PDF
    The multiplexing technique of the Wideband-Code Division Multiple Access (WCDMA) is widely applied in the third generation (3G) of cellular systems. The WCDMA uses scrambling codes to differentiate the mobile terminals. In a channel, multipaths may occur when the transmitted signal is reflected from objects in the receiver's environment, so that multiple copies of the signal arrive at the antenna at different moments. Thus, a wideband signal may suffer frequency selective fading due to the multipath propagations. A Rake receiver is often used to combine the energies received on different paths, and a multipath searcher is needed to identify the multipath components and their associated delays. Correlating some shifted versions of the scrambling code with an incoming signal results in energy peaks at the multipath locations, when the locally generated scrambling sequence is aligned with the scrambling sequence of the incoming signal. A path acquisition in such a process requires a speed of millions of Multiply-Accumulate (MAC) cycles per second. The performances of the multipath searcher are mainly determined by the resolution and the acquisition time, which are often limited by the operation speed of the hardware resources. This thesis presents the design of a multipath searcher with a high resolution and a short acquisition time. The design consists of two aspects. The first aspect is of the searching algorithm. It is based on a double-dwell algorithm and a verification stage is introduced to lower the rate of false alarms. The second aspect in the design is the circuit of the searcher. This circuit is expected to operate at the chip rate of 3.84 MHz and the search period is chosen to be equal to the time interval of 5 slots, which requires a high operation speed of the computation units employed in the circuit. Moreover, in order to reduce the circuit complexity, only one Complex Multiplier-Accumulator (CMAC), instead of several ones in many existing searcher circuits, is employed to perform all the computation tasks without extending the search period, which make the computation time in the circuit more critical. Aiming at this challenge of the high speed requirement, a structure of the CMAC cell is designed with the technique of the wave pipeline, which permits the signal propagation through the circuit stages without constraints of clocks. For a good use of this technique, the circuit blocks are made to have equalized delay, by means of pass transistor logic cells, and by keeping such a delay short, the total computation time of the CMAC can be made within the required time limit of the searching. A complete circuit of the CMAC has been developed. It has two versions, with the Normal Process Complementary Pass Logic (NPCPL) and the Complementary Pass-Logic Transmission-Gates (CPL-TG), respectively. The structures of the arithmetic units have been chosen carefully so that the fan-in/fan-out constraints of the NPCPL and the CPL-TG logics are taken into consideration. The results of the simulation with a 0.18 om models have shown that this wave pipelined CMAC can process four inputs of 8 bits at a rate of 830 Mb/s. In order to evaluate the effectiveness of the searching algorithm, a Matlab simulation of the searcher circuit has been conducted. It has been observed that the proposed multipath searcher can lead to low probabilities of misdetection and false alarm for the test cases recommended by the 3 rd Generation Partnership Project (3GPP) standard. A test chip of the CMAC circuit has been fabricated in a CMOS 0.18 om technology process. The circuit is currently under test

    Implementation and Characterization of Mixed-Signal Neuromorphic ASICs

    Get PDF
    Accelerated neuromorphic hardware allows the emulation of spiking neural networks with a high speed-up factor compared to classical computer simulation approaches. However, realizing a high degree of versatility and configurability in the implemented models is challenging. In this thesis, we present two mixed-signal ASICs that improve upon previous architectures by augmenting the versatility of the modeled synapses and neurons. In the first part, we present the integration of an analog multi-compartment neuron model into the Multi-Compartment Chip. We characterize the properties of this neuron model and describe methods to compensate for deviations from ideal behavior introduced by the physical implementation. The implemented features of the multi-compartment neurons are demonstrated with a compact prototype setup. In the second part, the integration of a general-purpose microprocessor with analog models of neurons and synapses is described. This allows to define learning rules that go beyond spike-timing dependent plasticity in software without decreasing the speed-up of the underlying network emulation. In the third part, the importance of testability and pre-tapeout verification is discussed and exemplified by the design process of both chips

    The 1991 3rd NASA Symposium on VLSI Design

    Get PDF
    Papers from the symposium are presented from the following sessions: (1) featured presentations 1; (2) very large scale integration (VLSI) circuit design; (3) VLSI architecture 1; (4) featured presentations 2; (5) neural networks; (6) VLSI architectures 2; (7) featured presentations 3; (8) verification 1; (9) analog design; (10) verification 2; (11) design innovations 1; (12) asynchronous design; and (13) design innovations 2

    ポータビリティを意識したCMOSミックスドシグナルVLSI回路設計手法に関する研究

    Get PDF
    本研究は、半導体上に集積されたアナログ・ディジタル・メモリ回路から構成されるミクストシグナルシステムを別の製造プロセスへ移行することをポーティングとして定義し、効率的なポーティングを行うための設計方式と自動回路合成アルゴリズムを提案し、いくつかの典型的な回路に対する設計事例を示し、提案手法の妥当性を立証している。北九州市立大

    On detection of OFDM signals for cognitive radio applications

    Get PDF
    As the requirement for wireless telecommunications services continues to grow, it has become increasingly important to ensure that the Radio Frequency (RF) spectrum is managed efficiently. As a result of the current spectrum allocation policy, it has been found that portions of RF spectrum belonging to licensed users are often severely underutilised, at particular times and geographical locations. Awareness of this problem has led to the development of Dynamic Spectrum Access (DSA) and Cognitive Radio (CR) as possible solutions. In one variation of the shared-use model for DSA, it is proposed that the inefficient use of licensed spectrum could be overcome by enabling unlicensed users to opportunistically access the spectrum when the licensed user is not transmitting. In order for an unlicensed device to make decisions, it must be aware of its own RF environment and, therefore, it has been proposed that DSA could been abled using CR. One approach that has be identified to allow the CR to gain information about its operating environment is spectrum sensing. An interesting solution that has been identified for spectrum sensing is cyclostationary detection. This property refers to the inherent periodic nature of the second order statistics of many communications signals. One of the most common modulation formats in use today is Orthogonal Frequency Division Multiplexing (OFDM), which exhibits cyclostationarity due to the addition of a Cyclic Prefix (CP). This thesis examines several statistical tests for cyclostationarity in OFDM signals that may be used for spectrum sensing in DSA and CR. In particular, focus is placed on statistical tests that rely on estimation of the Cyclic Autocorrelation Function (CAF). Based on splitting the CAF into two complex component functions, several new statistical tests are introduced and are shown to lead to an improvement in detection performance when compared to the existing algorithms. The performance of each new algorithm is assessed in Additive White Gaussian Noise (AWGN), impulsive noise and when subjected to impairments such as multipath fading and Carrier Frequency Offset (CFO). Finally, each algorithm is targeted for Field Programmable Gate Array (FPGA) implementation using a Xilinx 7 series device. In order to keep resource costs to a minimum, it is suggested that the new algorithms are implemented on the FPGA using hardware sharing, and a simple mathematical re-arrangement of certain tests statistics is proposed to circumvent a costly division operation.As the requirement for wireless telecommunications services continues to grow, it has become increasingly important to ensure that the Radio Frequency (RF) spectrum is managed efficiently. As a result of the current spectrum allocation policy, it has been found that portions of RF spectrum belonging to licensed users are often severely underutilised, at particular times and geographical locations. Awareness of this problem has led to the development of Dynamic Spectrum Access (DSA) and Cognitive Radio (CR) as possible solutions. In one variation of the shared-use model for DSA, it is proposed that the inefficient use of licensed spectrum could be overcome by enabling unlicensed users to opportunistically access the spectrum when the licensed user is not transmitting. In order for an unlicensed device to make decisions, it must be aware of its own RF environment and, therefore, it has been proposed that DSA could been abled using CR. One approach that has be identified to allow the CR to gain information about its operating environment is spectrum sensing. An interesting solution that has been identified for spectrum sensing is cyclostationary detection. This property refers to the inherent periodic nature of the second order statistics of many communications signals. One of the most common modulation formats in use today is Orthogonal Frequency Division Multiplexing (OFDM), which exhibits cyclostationarity due to the addition of a Cyclic Prefix (CP). This thesis examines several statistical tests for cyclostationarity in OFDM signals that may be used for spectrum sensing in DSA and CR. In particular, focus is placed on statistical tests that rely on estimation of the Cyclic Autocorrelation Function (CAF). Based on splitting the CAF into two complex component functions, several new statistical tests are introduced and are shown to lead to an improvement in detection performance when compared to the existing algorithms. The performance of each new algorithm is assessed in Additive White Gaussian Noise (AWGN), impulsive noise and when subjected to impairments such as multipath fading and Carrier Frequency Offset (CFO). Finally, each algorithm is targeted for Field Programmable Gate Array (FPGA) implementation using a Xilinx 7 series device. In order to keep resource costs to a minimum, it is suggested that the new algorithms are implemented on the FPGA using hardware sharing, and a simple mathematical re-arrangement of certain tests statistics is proposed to circumvent a costly division operation

    Low-voltage embedded biomedical processor design

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2010.Cataloged from PDF version of thesis.Includes bibliographical references (p. 180-190).Advances in mobile electronics are fueling new possibilities in a variety of applications, one of which is ambulatory medical monitoring with body-worn or implanted sensors. Digital processors on such sensors serve to analyze signals in real-time and extract key features for transmission or storage. To support diverse and evolving applications, the processor should be flexible, and to extend sensor operating lifetime, the processor should be energy-efficient. This thesis focuses on architectures and circuits for low power biomedical signal processing. A general-purpose processor is extended with custom hardware accelerators to reduce the cycle count and energy for common tasks, including FIR and median filtering as well as computing FFTs and mathematical functions. Improvements to classic architectures are proposed to reduce power and improve versatility: an FFT accelerator demonstrates a new control scheme to reduce datapath switching activity, and a modified CORDIC engine features increased input range and decreased quantization error over conventional designs. At the system level, the addition of accelerators increases leakage power and bus loading; strategies to mitigate these costs are analyzed in this thesis. A key strategy for improving energy efficiency is to aggressively scale the power supply voltage according to application performance demands. However, increased sensitivity to variation at low voltages must be mitigated in logic and SRAM design. For logic circuits, a design flow and a hold time verification methodology addressing local variation are proposed and demonstrated in a 65nm microcontroller functioning at 0.3V. For SRAMs, a model for the weak-cell read current is presented for near-V supply voltages, and a self-timed scheme for reducing internal bus glitches is employed with low leakage overhead. The above techniques are demonstrated in a 0.5-1.OV biomedical signal processing platform in 0.13p-Lm CMOS. The use of accelerators for key signal processing enabled greater than 10x energy reduction in two complete EEG and EKG analysis applications, as compared to implementations on a conventional processor.by Joyce Y. S. Kwong.Ph.D

    A low-power quadrature digital modulator in 0.18um CMOS

    Get PDF
    Quadrature digital modulation techniques are widely used in modern communication systems because of their high performance and flexibility. However, these advantages come at the cost of high power consumption. As a result, power consumption has to be taken into account as a main design factor of the modulator.In this thesis, a low-power quadrature digital modulator in 0.18um CMOS is presented with the target system clock speed of 150 MHz. The quadrature digital modulator consists of several key blocks: quadrature direct digital synthesizer (QDDS), pulse shaping filter, interpolation filter and inverse sinc filter. The design strategy is to investigate different implementations for each block and compare the power consumption of these implementations. Based on the comparison results, the implementation that consumes the lowest power will be chosen for each block. First of all, a novel low-power QDDS is proposed in the thesis. Power consumption estimation shows that it can save up to 60% of the power consumption at 150 MHz system clock frequency compared with one conventional design. Power consumption estimation results also show that using two pulse shaping blocks to process I/Q data, cascaded integrator comb (CIC) interpolation structure, and inverse sinc filter with modified canonic signed digit (MCSD) multiplication consume less power than alternative design choices. These low-power blocks are integrated together to achieve a low-power modulator. The power consumption estimation after layout shows that it only consumes about 95 mW at 150 MHz system clock rate, which is much lower than similar commercial products. The designed modulator can provide a low-power solution for various quadrature modulators. It also has an output bandwidth from 0 to 75 MHz, configurable pulse shaping filters and interpolation filters, and an internal sin(x)/x correction filter
    corecore