562 research outputs found

    Robust Algorithms for Linear and Nonlinear Regression via Sparse Modeling Methods: Theory, Algorithms and Applications to Image Denoising

    Get PDF
    Η εύρωστη παλινδρόμηση κατέχει έναν πολύ σημαντικό ρόλο στην Επεξεργασία Σήματος, τη Στατιστική και τη Μηχανική Μάθηση. Συνήθεις εκτιμητές, όπως τα «Ελάχιστα Τετράγωνα», αποτυγχάνουν να εκτιμήσουν σωστά παραμέτρους, όταν στα δεδομένα υπεισέρχονται ακραίες παρατηρήσεις, γνωστές ως “outliers”. Το πρόβλημα αυτό είναι γνωστό εδώ και δεκαετίες, μέσα στις οποίες διάφορες μέθοδοι έχουν προταθεί. Παρόλα αυτά, το ενδιαφέρον της επιστημονικής κοινότητας για αυτό αναζωπυρώθηκε όταν επανεξετάστηκε υπό το πρίσμα της αραιής μοντελοποίησης και των αντίστοιχων τεχνικών, η οποία κυριαρχεί στον τομέα της μηχανικής μάθησης εδώ και δύο δεκαετίες. Αυτή είναι και η κατεύθυνση η οποία ακολουθήθηκε στην παρούσα διατριβή. Το αποτέλεσμα αυτής της εργασίας ήταν η ανάπτυξη μιας νέας προσέγγισης, βασισμένης σε άπληστες τεχνικές αραιής μοντελοποίησης. Το μοντέλο που υιοθετείται βασίζεται στην ανάλυση του θορύβου σε δύο συνιστώσες: α) μια για το συμβατικό (αναμενόμενο) θόρυβο και β) μια για τις ακραίες παρατηρήσεις (outliers), οι οποίες θεωρήθηκε ότι είναι λίγες (αραιές) σε σχέση με τον αριθμό των δεδομένων. Με βάση αυτή τη μοντελοποίηση και τον γνωστό άπληστο αλγόριθμο “Orthogonal Matching Pursuit” (OMP), δύο νέοι αλγόριθμοι αναπτύχθηκαν, ένας για το γραμμικό και ένας για το μη γραμμικό πρόβλημα της εύρωστης παλινδρόμησης. Ο προτεινόμενος αλγόριθμος για τη γραμμική παλινδρόμηση ονομάζεται “Greedy Algorithm for Robust Demoising” (GARD) και εναλλάσσει τα βήματά του μεταξύ της μεθόδου Ελαχίστων Τετραγώνων (LS) και της αναγνώρισης των ακραίων παρατηρήσεων, τεχνικής που βασίζεται στον OMP. Στη συνέχεια, ακολουθεί η σύγκριση της νέας μεθόδου με ανταγωνιστικές της. Συγκεκριμένα, από τα αποτελέσματα παρατηρείται ότι ο GARD: α) δείχνει ανοχή σε ακραίες τιμές (εύρωστος), β) καταφέρνει να προσεγγίσει τη λύση με πολύ μικρό λάθος και γ) απαιτεί μικρό υπολογιστικό κόστος. Επιπλέον, προκύπτουν σημαντικά θεωρητικά ευρήματα, τα οποία οφείλονται στην απλότητα της μεθόδου. Αρχικά, αποδεικνύεται ότι η μέθοδος συγκλίνει σε πεπερασμένο αριθμό βημάτων. Στη συνέχεια, η μελέτη επικεντρώνεται στην αναγνώριση των ακραίων παρατηρήσεων. Το γεγονός ότι η περίπτωση απουσίας συμβατικού θορύβου μελετήθηκε ξεχωριστά, οφείλεται κυρίως στα εξής: α) στην απλοποίηση απαιτητικών πράξεων και β) στην ανάδειξη σημαντικών γεωμετρικών ιδιοτήτων. Συγκεκριμένα, προέκυψε κατάλληλο φράγμα για τη σταθερά της συνθήκης «Περιορισμένης Ισομετρίας» (“Restricted Isometry Property” - (RIP)), το οποίο εξασφαλίζει ότι η ανάκτηση του σήματος μέσω του GARD είναι ακριβής (μηδενικό σφάλμα). Τέλος, για την περίπτωση όπου ακραίες τιμές και συμβατικός θόρυβος συνυπάρχουν και με την παραδοχή ότι το διάνυσμα του συμβατικού θορύβου είναι φραγμένο, προέκυψε μια αντίστοιχη συνθήκη η οποία εξασφαλίζει την ανάκτηση του φορέα του αραιού διανύσματος θορύβου (outliers). Δεδομένου ότι μια τέτοια συνθήκη ικανοποιείται, αποδείχθηκε ότι το σφάλμα προσέγγισης είναι φραγμένο και άρα ο εκτιμητής GARD ευσταθής. Για το πρόβλημα της εύρωστης μη γραμμικής παλινδρόμησης, θεωρείται, επιπλέον, ότι η άγνωστη μη γραμμική συνάρτηση ανήκει σε ένα χώρο Hilbert με αναπαραγωγικούς πυρήνες (RKHS). Λόγω της ύπαρξης ακραίων παρατηρήσεων, τεχνικές όπως το Kernel Ridge Regression (KRR) ή το Support Vector Regression (SVR) αποδεικνύονται ανεπαρκείς. Βασισμένοι στην προαναφερθείσα ανάλυση των συνιστωσών του θορύβου και χρησιμοποιώντας την τεχνική της αραιής μοντελοποίησης, πραγματοποιείται η εκτίμηση των ακραίων παρατηρήσεων σύμφωνα με τα βήματα μιας άπληστης επαναληπτικής διαδικασίας. Ο προτεινόμενος αλγόριθμος ονομάζεται “Kernel Greedy Algorithm for Robust Denoising” (KGARD), και εναλλάσσει τα βήματά μεταξύ ενός εκτιμητή KRR και της αναγνώρισης ακραίων παρατηρήσεων, με βάση τον OMP. Αναλύεται θεωρητικά η ικανότητα του αλγορίθμου να αναγνωρίσει τις πιθανές ακραίες παρατηρήσεις. Επιπλέον, ο αλγόριθμος KGARD συγκρίνεται με άλλες μεθόδους αιχμής μέσα από εκτεταμένο αριθμό πειραμάτων, όπου και παρατηρείται η σαφώς καλύτερη απόδοσή του. Τέλος, η προτεινόμενη μέθοδος για την εύρωστη παλινδρόμηση εφαρμόζεται στην αποθορύβωση εικόνας, όπου αναδεικνύονται τα σαφή πλεονεκτήματα της μεθόδου. Τα πειράματα επιβεβαιώνουν ότι ο αλγόριθμος KGARD βελτιώνει σημαντικά την διαδικασία της αποθορύβωσης, στην περίπτωση όπου στον θόρυβο υπεισέρχονται ακραίες παρατηρήσεις.The task of robust regression is of particular importance in signal processing, statistics and machine learning. Ordinary estimators, such as the Least Squares (LS) one, fail to achieve sufficiently good performance in the presence of outliers. Although the problem has been addressed many decades ago and several methods have been established, it has recently attracted more attention in the context of sparse modeling and sparse optimization techniques. The latter is the line that has been followed in the current dissertation. The reported research, led to the development of a novel approach in the context of greedy algorithms. The model adopts the decomposition of the noise into two parts: a) the inlier noise and b) the outliers, which are explicitly modeled by employing sparse modeling arguments. Based on this rationale and inspired by the popular Orthogonal Matching Pursuit (OMP), two novel efficient greedy algorithms are established, one for the linear and another one for the nonlinear robust regression task. The proposed algorithm for the linear task, i.e., Greedy Algorithm for Robust Denoising (GARD), alternates between a Least Squares (LS) optimization criterion and an OMP selection step, that identifies the outliers. The method is compared against state-of-the-art methods through extensive simulations and the results demonstrate that: a) it exhibits tolerance in the presence of outliers, i.e., robustness, b) it attains a very low approximation error and c) it has relatively low computational requirements. Moreover, due to the simplicity of the method, a number of related theoretical properties are derived. Initially, the convergence of the method in a finite number of iteration steps is established. Next, the focus of the theoretical analysis is turned on the identification of the outliers. The case where only outliers are present has been studied separately; this is mainly due to the following reasons: a) the simplification of technically demanding algebraic manipulations and b) the “articulation” of the method’s interesting geometrical properties. In particular, a bound based on the Restricted Isometry Property (RIP) constant guarantees that the recovery of the signal via GARD is exact (zero error). Finally, for the case where outliers as well as inlier noise coexist, and by assuming that the inlier noise vector is bounded, a similar condition that guarantees the recovery of the support for the sparse outlier vector is derived. If such a condition is satisfied, then it is shown that the approximation error is bounded, and thus the denoising estimator is stable. For the robust nonlinear regression task, it is assumed that the unknown nonlinear function belongs to a Reproducing Kernel Hilbert Space (RKHS). Due to the existence of outliers, common techniques such as the Kernel Ridge Regression (KRR), or the Support Vector Regression (SVR) turn out to be inadequate. By employing the aforementioned noise decomposition, sparse modeling arguments are employed so that the outliers are estimated according to the greedy approach. The proposed robust scheme, i.e., Kernel Greedy Algorithm for Robust Denoising (KGARD), alternates between a KRR task and an OMP-like selection step. Theoretical results regarding the identification of the outliers are provided. Moreover, KGARD is compared against other cutting edge methods via extensive simulations, where its enhanced performance is demonstrated. Finally, the proposed robust estimation framework is applied to the task of image denoising, where the advantages of the proposed method are unveiled. The experiments verify that KGARD improves the denoising process significantly, when outliers are present

    Data-driven sparse estimation of nonlinear fluid flows

    Get PDF
    Estimation of full state fluid flow from limited observations is central for many practical applications in physics and engineering science. Fluid flows are manifestations of nonlinear multiscale partial differential equations (PDE) dynamical systems with inherent scale separation. Although the Navier-stokes equations can successfully model fluid flows, there are only limited cases of flows for which it is feasible to acquire exact analytical or numerical solutions. For many real-life fluid flow problems, extremely complex boundary conditions limit accurate modeling and simulations. In such situations, data from experiments or field measurements represents the absolute truth and very few in numbers thus limiting the potential of in-depth analysis. Consequently different data-driven techniques have been critical in active research in recent days. The ability to reconstruct important fluid flows from limited data is critical in applications extending from active flow control to as diverse as cardiac blood flow modeling and climate science. In this work, we investigated both (1) linear estimation method by leveraging data specific proper orthogonal decomposition (POD) technique, and (2) nonlinear estimation method on the ground of machine learning using deep neural network (DNN) algorithm. Given that sparse reconstruction is an inherently ill-posed problem, to generate well-posedness our linear sparse estimation (LSE) approach encodes the physics into the underlying sparse basis obtained from POD. On the other hand, for nonlinear sparse estimation (NLSE) we tried to find an optimal neural network model working over different ranges of hyperparameters through a systematic implementation. Our NLSE approach learns an end-to-end mapping between the sensor measurements and the high dimensional fluid flow field. We demonstrate the performance of both approaches for low and high dimensional examples in fluid mechanics. We also assess the interplay between sensor quantity and their placements introducing some greedy-smart sensor placement methods such as Discrete Empirical Interpolation Method (DEIM), QR-pivoting, etc. The LSE method needs the knowledge of low dimensional sparse basis to be known a priori, whereas the NLSE requires no prior knowledge to be available. The estimation algorithm of NLSE is purely data-driven with a comparable level of performance. To make our neural network optimization more robust we implemented Latin Hypercube Sampling (LHS) algorithm to ensure that each hyperparameter sample has all portions of its distribution in the considered range of analysis instead of sampling them randomly. Throughout the thesis, we demonstrate a comparison of each approach taken into consideration to conclude on their performances. A special focus has been placed to learn high dimensional multiscale system such as the near-wall turbulent channel flow using the NLSE method to evaluate the advantages and limitations of the nonlinear approach in comparison to the traditional linear estimation

    Patch-based methods for variational image processing problems

    Get PDF
    Image Processing problems are notoriously difficult. To name a few of these difficulties, they are usually ill-posed, involve a huge number of unknowns (from one to several per pixel!), and images cannot be considered as the linear superposition of a few physical sources as they contain many different scales and non-linearities. However, if one considers instead of images as a whole small blocks (or patches) inside the pictures, many of these hurdles vanish and problems become much easier to solve, at the cost of increasing again the dimensionality of the data to process. Following the seminal NL-means algorithm in 2005-2006, methods that consider only the visual correlation between patches and ignore their spatial relationship are called non-local methods. While powerful, it is an arduous task to define non-local methods without using heuristic formulations or complex mathematical frameworks. On the other hand, another powerful property has brought global image processing algorithms one step further: it is the sparsity of images in well chosen representation basis. However, this property is difficult to embed naturally in non-local methods, yielding algorithms that are usually inefficient or circonvoluted. In this thesis, we explore alternative approaches to non-locality, with the goals of i) developing universal approaches that can handle local and non-local constraints and ii) leveraging the qualities of both non-locality and sparsity. For the first point, we will see that embedding the patches of an image into a graph-based framework can yield a simple algorithm that can switch from local to non-local diffusion, which we will apply to the problem of large area image inpainting. For the second point, we will first study a fast patch preselection process that is able to group patches according to their visual content. This preselection operator will then serve as input to a social sparsity enforcing operator that will create sparse groups of jointly sparse patches, thus exploiting all the redundancies present in the data, in a simple mathematical framework. Finally, we will study the problem of reconstructing plausible patches from a few binarized measurements. We will show that this task can be achieved in the case of popular binarized image keypoints descriptors, thus demonstrating a potential privacy issue in mobile visual recognition applications, but also opening a promising way to the design and the construction of a new generation of smart cameras

    The Sliding Frank-Wolfe Algorithm and its Application to Super-Resolution Microscopy

    Get PDF
    International audienceThis paper showcases the theoretical and numerical performance of the Sliding Frank-Wolfe, which is a novel optimization algorithm to solve the BLASSO sparse spikes super-resolution problem. The BLASSO is a continuous (i.e. off-the-grid or grid-less) counterpart to the well-known 1 sparse regularisation method (also known as LASSO or Basis Pursuit). Our algorithm is a variation on the classical Frank-Wolfe (also known as conditional gradient) which follows a recent trend of interleaving convex optimization updates (corresponding to adding new spikes) with non-convex optimization steps (corresponding to moving the spikes). Our main theoretical result is that this algorithm terminates in a finite number of steps under a mild non-degeneracy hypothesis. We then target applications of this method to several instances of single molecule fluorescence imaging modalities, among which certain approaches rely heavily on the inversion of a Laplace transform. Our second theoretical contribution is the proof of the exact support recovery property of the BLASSO to invert the 1-D Laplace transform in the case of positive spikes. On the numerical side, we conclude this paper with an extensive study of the practical performance of the Sliding Frank-Wolfe on different instantiations of single molecule fluorescence imaging, including convolutive and non-convolutive (Laplace-like) operators. This shows the versatility and superiority of this method with respect to alternative sparse recovery technics

    Data aware sparse non-negative signal processing

    Get PDF
    Greedy techniques are a well established framework aiming to reconstruct signals which are sparse in some domain of representations. They are renowned for their relatively low computational cost, that makes them appealing from the perspective of real time applications. Within the current work we focus on the explicit case of sparse non–negative signals that finds applications in several aspects of daily life e.g., food analysis, hazardous materials detection etc. The conventional approach to deploy this type of algorithms does not employ benefits from properties that characterise natural data, such as lower dimensional representations, underlying structures. Motivated by these properties of data we are aiming to incorporate methodologies within the domain of greedy techniques that will boost their performance in terms of: 1) computational efficiency and 2) signal recovery improvement (for the remainder of the thesis we will use the term acceleration when referring to the first goal and robustness when we are referring to the second goal). These benefits can be exploited via data aware methodologies that arise, from the Machine Learning and Deep Learning community. Within the current work we are aiming to establish a link among conventional sparse non–negative signal decomposition frameworks that rely on greedy techniques and data aware methodologies. We have explained the connection among data aware methodologies and the challenges associated with the sparse non–negative signal decompositions: 1) acceleration and 2) robustness. We have also introduced the standard data aware methodologies, which are relevant to our problem, and the theoretical properties they have. The practical implementations of the proposed frameworks are provided here. The main findings of the current work can be summarised as follows: • We introduce novel algorithms, theory for the Nearest Neighbor problem. • We accelerate a greedy algorithm for sparse non–negative signal decomposition by incorporating our algorithms within its structure. • We introduce a novel reformulation of greedy techniques from the perspective of a Deep Neural Network that boosts the robustness of greedy techniques. • We introduce the theoretical framework that fingerprints the conditions that lay down the soil for the exact recovery of the signal
    corecore