194 research outputs found

    Efficient software implementation of elliptic curves and bilinear pairings

    Get PDF
    Orientador: Júlio César Lopez HernándezTese (doutorado) - Universidade Estadual de Campinas, Instituto de ComputaçãoResumo: O advento da criptografia assimétrica ou de chave pública possibilitou a aplicação de criptografia em novos cenários, como assinaturas digitais e comércio eletrônico, tornando-a componente vital para o fornecimento de confidencialidade e autenticação em meios de comunicação. Dentre os métodos mais eficientes de criptografia assimétrica, a criptografia de curvas elípticas destaca-se pelos baixos requisitos de armazenamento para chaves e custo computacional para execução. A descoberta relativamente recente da criptografia baseada em emparelhamentos bilineares sobre curvas elípticas permitiu ainda sua flexibilização e a construção de sistemas criptográficos com propriedades inovadoras, como sistemas baseados em identidades e suas variantes. Porém, o custo computacional de criptossistemas baseados em emparelhamentos ainda permanece significativamente maior do que os assimétricos tradicionais, representando um obstáculo para sua adoção, especialmente em dispositivos com recursos limitados. As contribuições deste trabalho objetivam aprimorar o desempenho de criptossistemas baseados em curvas elípticas e emparelhamentos bilineares e consistem em: (i) implementação eficiente de corpos binários em arquiteturas embutidas de 8 bits (microcontroladores presentes em sensores sem fio); (ii) formulação eficiente de aritmética em corpos binários para conjuntos vetoriais de arquiteturas de 64 bits e famílias mais recentes de processadores desktop dotadas de suporte nativo à multiplicação em corpos binários; (iii) técnicas para implementação serial e paralela de curvas elípticas binárias e emparelhamentos bilineares simétricos e assimétricos definidos sobre corpos primos ou binários. Estas contribuições permitiram obter significativos ganhos de desempenho e, conseqüentemente, uma série de recordes de velocidade para o cálculo de diversos algoritmos criptográficos relevantes em arquiteturas modernas que vão de sistemas embarcados de 8 bits a processadores com 8 coresAbstract: The development of asymmetric or public key cryptography made possible new applications of cryptography such as digital signatures and electronic commerce. Cryptography is now a vital component for providing confidentiality and authentication in communication infra-structures. Elliptic Curve Cryptography is among the most efficient public-key methods because of its low storage and computational requirements. The relatively recent advent of Pairing-Based Cryptography allowed the further construction of flexible and innovative cryptographic solutions like Identity-Based Cryptography and variants. However, the computational cost of pairing-based cryptosystems remains significantly higher than traditional public key cryptosystems and thus an important obstacle for adoption, specially in resource-constrained devices. The main contributions of this work aim to improve the performance of curve-based cryptosystems, consisting of: (i) efficient implementation of binary fields in 8-bit microcontrollers embedded in sensor network nodes; (ii) efficient formulation of binary field arithmetic in terms of vector instructions present in 64-bit architectures, and on the recently-introduced native support for binary field multiplication in the latest Intel microarchitecture families; (iii) techniques for serial and parallel implementation of binary elliptic curves and symmetric and asymmetric pairings defined over prime and binary fields. These contributions produced important performance improvements and, consequently, several speed records for computing relevant cryptographic algorithms in modern computer architectures ranging from embedded 8-bit microcontrollers to 8-core processorsDoutoradoCiência da ComputaçãoDoutor em Ciência da Computaçã

    Elliptic Curve Cryptography on Modern Processor Architectures

    Get PDF
    Abstract Elliptic Curve Cryptography (ECC) has been adopted by the US National Security Agency (NSA) in Suite "B" as part of its "Cryptographic Modernisation Program ". Additionally, it has been favoured by an entire host of mobile devices due to its superior performance characteristics. ECC is also the building block on which the exciting field of pairing/identity based cryptography is based. This widespread use means that there is potentially a lot to be gained by researching efficient implementations on modern processors such as IBM's Cell Broadband Engine and Philip's next generation smart card cores. ECC operations can be thought of as a pyramid of building blocks, from instructions on a core, modular operations on a finite field, point addition & doubling, elliptic curve scalar multiplication to application level protocols. In this thesis we examine an implementation of these components for ECC focusing on a range of optimising techniques for the Cell's SPU and the MIPS smart card. We show significant performance improvements that can be achieved through of adoption of EC

    Hardware processors for pairing-based cryptography

    Get PDF
    Bilinear pairings can be used to construct cryptographic systems with very desirable properties. A pairing performs a mapping on members of groups on elliptic and genus 2 hyperelliptic curves to an extension of the finite field on which the curves are defined. The finite fields must, however, be large to ensure adequate security. The complicated group structure of the curves and the expensive field operations result in time consuming computations that are an impediment to the practicality of pairing-based systems. The Tate pairing can be computed efficiently using the ɳT method. Hardware architectures can be used to accelerate the required operations by exploiting the parallelism inherent to the algorithmic and finite field calculations. The Tate pairing can be performed on elliptic curves of characteristic 2 and 3 and on genus 2 hyperelliptic curves of characteristic 2. Curve selection is dependent on several factors including desired computational speed, the area constraints of the target device and the required security level. In this thesis, custom hardware processors for the acceleration of the Tate pairing are presented and implemented on an FPGA. The underlying hardware architectures are designed with care to exploit available parallelism while ensuring resource efficiency. The characteristic 2 elliptic curve processor contains novel units that return a pairing result in a very low number of clock cycles. Despite the more complicated computational algorithm, the speed of the genus 2 processor is comparable. Pairing computation on each of these curves can be appealing in applications with various attributes. A flexible processor that can perform pairing computation on elliptic curves of characteristic 2 and 3 has also been designed. An integrated hardware/software design and verification environment has been developed. This system automates the procedures required for robust processor creation and enables the rapid provision of solutions for a wide range of cryptographic applications

    Breaking pairing-based cryptosystems using ηT\eta_T pairing over GF(397)GF(3^{97})

    Get PDF
    There are many useful cryptographic schemes, such as ID-based encryption, short signature, keyword searchable encryption, attribute-based encryption, functional encryption, that use a bilinear pairing. It is important to estimate the security of such pairing-based cryptosystems in cryptography. The most essential number-theoretic problem in pairing-based cryptosystems is the discrete logarithm problem (DLP) because pairing-based cryptosystems are no longer secure once the underlining DLP is broken. One efficient bilinear pairing is the ηT\eta_T pairing defined over a supersingular elliptic curve EE on the finite field GF(3n)GF(3^n) for a positive integer nn. The embedding degree of the ηT\eta_T pairing is 66; thus, we can reduce the DLP over EE on GF(3n)GF(3^n) to that over the finite field GF(36n)GF(3^{6n}). In this paper, for breaking the ηT\eta_T pairing over GF(3n)GF(3^n), we discuss solving the DLP over GF(36n)GF(3^{6n}) by using the function field sieve (FFS), which is the asymptotically fastest algorithm for solving a DLP over finite fields of small characteristics. We chose the extension degree n=97n=97 because it has been intensively used in benchmarking tests for the implementation of the ηT\eta_T pairing, and the order (923-bit) of GF(3697)GF(3^{6\cdot 97}) is substantially larger than the previous world record (676-bit) of solving the DLP by using the FFS. We implemented the FFS for the medium prime case (JL06-FFS), and propose several improvements of the FFS, for example, the lattice sieve for JL06-FFS and the filtering adjusted to the Galois action. Finally, we succeeded in solving the DLP over GF(3697)GF(3^{6\cdot 97}). The entire computational time of our improved FFS requires about 148.2 days using 252 CPU cores. Our computational results contribute to the secure use of pairing-based cryptosystems with the ηT\eta_T pairing

    Secure architectures for pairing based public key cryptography

    Get PDF
    Along with the growing demand for cryptosystems in systems ranging from large servers to mobile devices, suitable cryptogrophic protocols for use under certain constraints are becoming more and more important. Constraints such as calculation time, area, efficiency and security, must be considered by the designer. Elliptic curves, since their introduction to public key cryptography in 1985 have challenged established public key and signature generation schemes such as RSA, offering more security per bit. Amongst Elliptic curve based systems, pairing based cryptographies are thoroughly researched and can be used in many public key protocols such as identity based schemes. For hardware implementions of pairing based protocols, all components which calculate operations over Elliptic curves can be considered. Designers of the pairing algorithms must choose calculation blocks and arrange the basic operations carefully so that the implementation can meet the constraints of time and hardware resource area. This thesis deals with different hardware architectures to accelerate the pairing based cryptosystems in the field of characteristic two. Using different top-level architectures the hardware efficiency of operations that run at different times is first considered in this thesis. Security is another important aspect of pairing based cryptography to be considered in practically Side Channel Analysis (SCA) attacks. The naively implemented hardware accelerators for pairing based cryptographies can be vulnerable when taking the physical analysis attacks into consideration. This thesis considered the weaknesses in pairing based public key cryptography and addresses the particular calculations in the systems that are insecure. In this case, countermeasures should be applied to protect the weak link of the implementation to improve and perfect the pairing based algorithms. Some important rules that the designers must obey to improve the security of the cryptosystems are proposed. According to these rules, three countermeasures that protect the pairing based cryptosystems against SCA attacks are applied. The implementations of the countermeasures are presented and their performances are investigated

    Solving discrete logarithms on a 170-bit MNT curve by pairing reduction

    Get PDF
    Pairing based cryptography is in a dangerous position following the breakthroughs on discrete logarithms computations in finite fields of small characteristic. Remaining instances are built over finite fields of large characteristic and their security relies on the fact that the embedding field of the underlying curve is relatively large. How large is debatable. The aim of our work is to sustain the claim that the combination of degree 3 embedding and too small finite fields obviously does not provide enough security. As a computational example, we solve the DLP on a 170-bit MNT curve, by exploiting the pairing embedding to a 508-bit, degree-3 extension of the base field.Comment: to appear in the Lecture Notes in Computer Science (LNCS

    An FPGA-based programmable processor for bilinear pairings

    Get PDF
    Bilinear pairings on elliptic curves are an active research field in cryptography. First cryptographic protocols based on bilinear pairings were proposed by the year 2000 and they are promising solutions to security concerns in different domains, as in Pervasive Computing and Cloud Computing. The computation of bilinear pairings that relies on arithmetic over finite fields is the most time-consuming in Pairing-based cryptosystems. That has motivated the research on efficient hardware architectures that improve the performance of security protocols. In the literature, several works have focused in the design of custom hardware architectures for pairings, however, flexible designs provide advantages due to the fact that there are several types of pairings and algorithms to compute them. This work presents the design and implementation of a novel programmable cryptoprocessor for computing bilinear pairings over binary fields in FPGAs, which is able to support different pairing algorithms and parameters as the elliptic curve, the tower field and the distortion map. The results show that high flexibility is achieved by the proposed cryptoprocessor at a competitive timing and area usage when it is compared to custom designs for pairings defined over singular/supersingular elliptic curves at a 128-bit security level

    Cryptographic key distribution in wireless sensor networks: a hardware perspective

    Get PDF
    In this work the suitability of different methods of symmetric key distribution for application in wireless sensor networks are discussed. Each method is considered in terms of its security implications for the network. It is concluded that an asymmetric scheme is the optimum choice for key distribution. In particular, Identity-Based Cryptography (IBC) is proposed as the most suitable of the various asymmetric approaches. A protocol for key distribution using identity based Non-Interactive Key Distribution Scheme (NIKDS) and Identity-Based Signature (IBS) scheme is presented. The protocol is analysed on the ARM920T processor and measurements were taken for the run time and energy of its components parts. It was found that the Tate pairing component of the NIKDS consumes significants amounts of energy, and so it should be ported to hardware. An accelerator was implemented in 65nm Complementary Metal Oxide Silicon (CMOS) technology and area, timing and energy figures have been obtained for the design. Initial results indicate that a hardware implementation of IBC would meet the strict energy constraint of a wireless sensor network node
    corecore