39,139 research outputs found

    Effects of Power Line Communication on Radio Communication Equipment

    Get PDF
    Radio communication is a wireless transfer of information via power cable by Power Line Communication (PLC) and its dissemination through radio communication equipment.. However, this information causes signal interference, noise and distortion with the power line communication. This work analyzed the effect of PLC on radio communication equipment by interconnecting two high-speed PLC modems communicating with a data rate of up to 250 Mbit/s using telephone distribution wiring for radio spectrum to reduce the interference radiation that emanates from a power line. The measurements were made using a reference antenna at a distance of 3 m from the power line. The peak field-strength values were measured and recorded in the 30-350 MHz frequency range in horizontal and vertical polarization. The result shows that interference radiation occurring at frequencies up to 305 MHz, includes the FM band as well as the Digital Audio Broadcasting (DAB) band. It is expected that as the data rate of high speed modems increases, a corresponding increase in the interference radiation occurs at frequencies above 300 MHz. To this regard, administrations should take all practicable and necessary steps to ensure that the operation of power and telecommunication distribution networks do not cause harmful interference to a radio communication service. Keywords: PLC, Radio Communication, Interference, Noise, Distortion, Communication Equipment, Field Strength, DAB DOI: 10.7176/JNSR/9-16-04 Publication date: August 31st 201

    Characterization and treatment of titanium dioxide, TiO2 via ultrasonic process with melastoma malabathricum as sustainable sensitizer for photovoltaic slar cell

    Get PDF
    Dye-sensitized solar cells (DSSCs) have been fabricated with doped Titanium Dioxide, TiO2 which are based on natural dyes from Malaysia tropical fruits, wherein contain interlocking groups; the carbonyl and hydroxyl groups of the anthocyanin molecule which enhance the photosensitization effect due to the high interaction on the surface of the film. Such a natural dye extracted from Melastoma Malabathricum can be subjected to molecular tailoring to give a superior dye preparation, offering a wide range of spectral absorption; covering the entire visible region (400 – 700 nm). This study is based on a series of TiO2 preparations designated U1 and U2 (without and with additive respectively), and those treated with ultrasonic energy, namely U3 and U4 (without and with additive respectively). 10 minutes of sonication of the metal oxide led to its breakdown from agglomeration at the micro to the nano scale. Furthermore the additive (4-tert-butylpyridine) in potassium iodide, KI3 electrolyte, effects the rate of electron injection into the oxidized dye sensitizer. Sonication of TiO2 reduced the particle size agglomerates from 0.37 ”m down to 0.15 ”m; this treatment led to a more consistency with high porosity, enabling enhance absorption and anchorage of the dye sensitizer. Sonicated sample U4, with addition of electrolyte additive gives, open circuit voltage, Voc= 0.742 V, short circuit current, Isc= 0.36 mA, fill factor, FF= 57.012 and 0.039 % of cell’s efficiency. Evidently, sonication and addition of additive for KI3 electrolyte offer enhanced capability for further application

    Performance Analysis of Discrete Wavelet Multitone Transceiver for Narrowband PLC in Smart Grid

    Get PDF
    Smart Grid is an abstract idea, which involves the utilization of powerlines for sensing, measurement, control and communication for efficient utilization and distribution of energy, as well as automation of meter reading, load management and capillary control of Green Energy resources connected to the grid. Powerline Communication (PLC) has assumed a new role in the Smart Grid scenario, adopting the narrowband PLC (NB-PLC) for a low cost and low data rate communication for applications such as, automatic meter reading, dynamic management of load, etc. In this paper, we have proposed and simulated a discrete wavelet multitone (DWMT) transceiver in the presence of impulse noise for the NB-PLC channel applications in Smart Grid. The simulation results show that a DWMT transceiver outperforms a DFT-DMT with reference to the bit error rate (BER) performance

    State-of-the-art in Power Line Communications: from the Applications to the Medium

    Get PDF
    In recent decades, power line communication has attracted considerable attention from the research community and industry, as well as from regulatory and standardization bodies. In this article we provide an overview of both narrowband and broadband systems, covering potential applications, regulatory and standardization efforts and recent research advancements in channel characterization, physical layer performance, medium access and higher layer specifications and evaluations. We also identify areas of current and further study that will enable the continued success of power line communication technology.Comment: 19 pages, 12 figures. Accepted for publication, IEEE Journal on Selected Areas in Communications. Special Issue on Power Line Communications and its Integration with the Networking Ecosystem. 201

    Expansion Aspect of Color Transparency on the Lattice

    Full text link
    The opportunity to observe color transparency (CT) is determined by how rapidly a small-sized hadronic wave packet expands. Here we use SU(2) lattice gauge theory with Wilson fermions in the quenched approximation to investigate the expansion. The wave packet is modeled by a point hadronic source, often used as an interpolating field in lattice calculations. The procedure is to determine the Euclidean time (t), pion channel, Bethe-Salpeter amplitude Κ(r,t)\Psi(r,t), and then evaluate b2(t)=∫d3rΚ(r,t)r2sin2ΞΚπ(r)b^2(t)=\int d^3 r \Psi(r,t) r^2 sin^2 \theta \Psi_{\pi}(r). This quantity represents the soft interaction of a small-sized wave packet with a pion. The time dependence of b2(t)b^2(t) is fit as a superposition of three states, which is found sufficient to reproduce a reduced size wave packet. Using this superposition allows us to make the analytic continuation required to study the wave packet expansion in real time. We find that the matrix elements of the soft interaction b^2\hat b^2 between the excited and ground state decrease rapidly with the energy of the excited state.Comment: 19 pages, latex, 4 figure

    PLC for the smart grid: state-of-the-art and challenges

    Get PDF
    This paper aims to review systems and applications for power line communications (PLC) in the context of the smart grid. We discuss the main applications and summarise state-of-the-art PLC systems and standards. We report efforts and challenges in channel and noise modelling, as well as in state-of-the-art transmission technology approaches
    • 

    corecore