1,780 research outputs found

    Efficient DSP and Circuit Architectures for Massive MIMO: State-of-the-Art and Future Directions

    Full text link
    Massive MIMO is a compelling wireless access concept that relies on the use of an excess number of base-station antennas, relative to the number of active terminals. This technology is a main component of 5G New Radio (NR) and addresses all important requirements of future wireless standards: a great capacity increase, the support of many simultaneous users, and improvement in energy efficiency. Massive MIMO requires the simultaneous processing of signals from many antenna chains, and computational operations on large matrices. The complexity of the digital processing has been viewed as a fundamental obstacle to the feasibility of Massive MIMO in the past. Recent advances on system-algorithm-hardware co-design have led to extremely energy-efficient implementations. These exploit opportunities in deeply-scaled silicon technologies and perform partly distributed processing to cope with the bottlenecks encountered in the interconnection of many signals. For example, prototype ASIC implementations have demonstrated zero-forcing precoding in real time at a 55 mW power consumption (20 MHz bandwidth, 128 antennas, multiplexing of 8 terminals). Coarse and even error-prone digital processing in the antenna paths permits a reduction of consumption with a factor of 2 to 5. This article summarizes the fundamental technical contributions to efficient digital signal processing for Massive MIMO. The opportunities and constraints on operating on low-complexity RF and analog hardware chains are clarified. It illustrates how terminals can benefit from improved energy efficiency. The status of technology and real-life prototypes discussed. Open challenges and directions for future research are suggested.Comment: submitted to IEEE transactions on signal processin

    High-level synthesis optimization for blocked floating-point matrix multiplication

    Get PDF
    In the last decade floating-point matrix multiplication on FPGAs has been studied extensively and efficient architectures as well as detailed performance models have been developed. By design these IP cores take a fixed footprint which not necessarily optimizes the use of all available resources. Moreover, the low-level architectures are not easily amenable to a parameterized synthesis. In this paper high-level synthesis is used to fine-tune the configuration parameters in order to achieve the highest performance with maximal resource utilization. An\ exploration strategy is presented to optimize the use of critical resources (DSPs, memory) for any given FPGA. To account for the limited memory size on the FPGA, a block-oriented matrix multiplication is organized such that the block summation is done on the CPU while the block multiplication occurs on the logic fabric simultaneously. The communication overhead between the CPU and the FPGA is minimized by streaming the blocks in a Gray code ordering scheme which maximizes the data reuse for consecutive block matrix product calculations. Using high-level synthesis optimization, the programmable logic operates at 93% of the theoretical peak performance and the combined CPU-FPGA design achieves 76% of the available hardware processing speed for the floating-point multiplication of 2K by 2K matrices

    Memory and information processing in neuromorphic systems

    Full text link
    A striking difference between brain-inspired neuromorphic processors and current von Neumann processors architectures is the way in which memory and processing is organized. As Information and Communication Technologies continue to address the need for increased computational power through the increase of cores within a digital processor, neuromorphic engineers and scientists can complement this need by building processor architectures where memory is distributed with the processing. In this paper we present a survey of brain-inspired processor architectures that support models of cortical networks and deep neural networks. These architectures range from serial clocked implementations of multi-neuron systems to massively parallel asynchronous ones and from purely digital systems to mixed analog/digital systems which implement more biological-like models of neurons and synapses together with a suite of adaptation and learning mechanisms analogous to the ones found in biological nervous systems. We describe the advantages of the different approaches being pursued and present the challenges that need to be addressed for building artificial neural processing systems that can display the richness of behaviors seen in biological systems.Comment: Submitted to Proceedings of IEEE, review of recently proposed neuromorphic computing platforms and system
    • …
    corecore