22 research outputs found

    Desenvolvimento e otimização de sensores em fibra ótica produzidos por laser de femtosegundo

    Get PDF
    In this work, optical fibre sensors were developed and optimized using a pulsed femtosecond laser. In addition to the inherent advantages of using femtosecond pulses, by emitting radiation in the NIR band, it was possible to modify the refractive index inside dielectric materials, namely silica and polymer optical fibres. Prior to the manufacturing of optical structures, a theoretical study was carried out on the peculiarities of writing-systems based on femtosecond lasers, as well as on the most common devices inscribed in optical fibres, namely Bragg gratings, long period gratings, and Fabry-Pérot interferometers. After assembling femtosecond NIR laser system, Bragg gratings, long period gratings, Fabry-Pérot interferometers, and interferometers based on the optical Vernier effect were manufactured using the direct-writing and phase mask methods. Using the micromachining setup, different structures were created in already existing optical fibre sensors, namely channels in hollow Fabry-Pérot cavities and laser etching around Bragg gratings inscribed in polymers optical fibres. The spectral responses of all devices were extensively characterized to, mainly, variations of temperature and strain, revealing unique sensitivity values, especially for the interferometers based on the optical Vernier effect (> 1 nm/°C and 0.1 nm/µε for temperature and strain, respectively). To demystify the thermal stability of fibre Bragg gratings, a theoretical and experimental study was carried out where several Bragg gratings were inscribed by different techniques, involving different lasers as well as silica and polymer optical fibres. The experimental results corroborated the theoretical predictions, where it was concluded that the gratings inscribed by the point-to-point method using a femtosecond laser have a greater thermal stability and lifetime, even when subjected to longer and higher temperature regimes. Finally, a bridge was stablished between the fundamental research developed during the manufacture of the elementary optical fibre sensors, and possible applications. Five different sensor concepts were demonstrated and tested, capable of detecting variations in magnetic fields, fluids refractive index, temperature, strain and humidity. As results, astonishing sensitivity values were attained, and several cross-sensitivity problems were mitigated, thus establishing the foundations for the development of new prototypes for the future.Neste trabalho foram desenvolvidos e otimizados sensores em fibra ótica através de um laser pulsado de femtosegundo. Para além das vantagens inerentes de usar pulsos da ordem do femtosegundo, ao emitir radiação na banda do infravermelho foi possível modificar o índice de refração no interior de materiais dielétricos, nomeadamente fibras óticas de sílica e polímero. Antes de proceder ao fabrico das estruturas óticas, foi realizado um estudo teórico sobre as peculiaridades dos sistemas de escrita baseados em lasers de femtosegundo, bem como sobre os principais dispositivos inscritos em fibra ótica, nomeadamente redes de Bragg, redes de período longo, e interferómetros de Fabry-Pérot. Após montado o sistema laser NIR de femtosegundo, através de inscrição direta e por máscara de fase foram fabricadas redes de Bragg, redes de período longo, interferómetros de Fabry-Pérot, e interferómetros baseados no efeito ótico de Vernier. Com a montagem de micromaquinação, diferentes estruturas foram criadas em sensores já existentes, nomeadamente buracos em cavidades Fabry-Pérot e remoção de material ao redor de redes de Bragg. As respostas espetrais de todos os dispositivos foram extensivamente caracterizadas, nomeadamente a variações de temperatura e tensão, revelando elevados valores de sensibilidades, especialmente para os interferómetros baseados no efeito ótico de Vernier (> 1 nm/°C e 0.1 nm/µε para temeprature e tensão, respetivamente). Para desmistificar a estabilidade térmica de redes de Bragg em fibra ótica, foi feito um estudo teórico e experimental onde várias redes de Bragg foram gravadas por diferentes técnicas, envolvendo diferentes lasers e fibras óticas de sílica e polímero. Os resultados experimentais corroboraram as previsões teóricas, onde se concluiu que as redes gravadas pelo método de ponto-a-ponto usando um laser de femtosegundo detêm uma maior estabilidade térmica e tempo de vida, mesmo quando submetidas a regimes longos de altas temperaturas. Por fim, foi feita a ponte entre a investigação fundamental desenvolvida durante o fabrico de dispositivos elementares em fibras óticas e possíveis aplicações. Foram demonstrados e testados cinco conceitos diferentes de sensores, capazes de detetar variações de campos magnéticos, índice de refração de fluídos, temperatura, tensão e humidade. Foram atingidos valores de sensibilidade surpreendentes, bem como mitigados problemas de sensibilidade cruzada, tendo sido assim estabelecidas as fundações para o desenvolvimento de novos protótipos para o futuro.Programa Doutoral em Engenharia Físic

    Optical Thin Films and Structures

    Get PDF
    The book is devoted to the design, application and characterization of thin films and structures, with special emphasis on optical applications. It comprises ten papers—five featured and five regular—authored by scientists all over the world. Diverse materials are studied and their possible applications are demonstrated and discussed—transparent conductive coatings and structures from ZnO doped with Al and Ga and Ti-doped SnO2, polymers and nanosized zeolite thin films for optical sensing, TiO2 with linear and nonlinear optical properties, organic diamagnetic materials, broadband optical coatings, CrWN glass molding coatings, and silicon on insulator waveguides

    Polymer-based device fabrication and applications using direct laser writing technology

    Get PDF
    Polymer materials exhibit unique properties in the fabrication of optical waveguide devices, electromagnetic devices, and bio-devices. Direct laser writing (DLW) technology is widely used for micro-structure fabrication due to its high processing precision, low cost, and no need for mask exposure. This paper reviews the latest research progresses of polymer-based micro/nano-devices fabricated using the DLW technique as well as their applications. In order to realize various device structures and functions, different manufacture parameters of DLW systems are adopted, which are also investigated in this work. The flexible use of the DLW process in various polymer-based microstructures, including optical, electronic, magnetic, and biomedical devices are reviewed together with their applications. In addition, polymer materials which are developed with unique properties for the use of DLW technology are also discussed

    Novel Specialty Optical Fibers and Applications

    Get PDF
    Novel Specialty Optical Fibers and Applications focuses on the latest developments in specialty fiber technology and its applications. The aim of this reprint is to provide an overview of specialty optical fibers in terms of their technological developments and applications. Contributions include:1. Specialty fibers composed of special materials for new functionalities and applications in new spectral windows.2. Hollow-core fiber-based applications.3. Functionalized fibers.4. Structurally engineered fibers.5. Specialty fibers for distributed fiber sensors.6. Specialty fibers for communications

    Enabling Technology in Optical Fiber Communications: From Device, System to Networking

    Get PDF
    This book explores the enabling technology in optical fiber communications. It focuses on the state-of-the-art advances from fundamental theories, devices, and subsystems to networking applications as well as future perspectives of optical fiber communications. The topics cover include integrated photonics, fiber optics, fiber and free-space optical communications, and optical networking

    Surface plasmon resonance sensing: an optical fibre based SPR platform with scattered light interrogation

    Get PDF
    This thesis describes the development, fabrication and optimisation of a Surface Plasmon Resonance (SPR) sensing architecture based on optical fibres. Motivated by biosensing applications, SPR was chosen as a simple and sensitive label-free technique that allows real time quantitative measurements of biomolecular interactions. Unlike conventional fibre SPR probes, this platform utilises a novel interrogation mechanism based on the analysis of scattered radiation facilitated by a rough plasmonic coating. A theoretical study is performed in order to determine the optimal parameters of the sensing configuration, i. e. the metal coating and fibre material. This analysis revealed a trade-off between the sensitivity of these devices, and their resolution. Optical fibres with cores made of lower refractive index materials were found to increase the sensitivity of the sensor, but broaden the SPR spectral signature. This broadening of the linewidth results in an unwanted increase in the sensor resolution, which leads to an undesirable increase in the detection limit. Therefore, experiments were performed to investigate the trade off between the sensitivity and resolution of the sensor to optimise both performance characteristics. The experimental demonstration and characterisation of a scattering SPR platform based on lead silicate fibres is described. The plasmonic coating with required surface roughness was fabricated using chemical electroless plating. In order to increase the refractive index sensitivity, a fibre SPR sensor with a lower refractive index core made of fused silica was produced. Due to the different surface properties of the silica glass and the lead silicate glass, surface modification with stannous chloride was required to fabricate suitable plasmonic coatings on the fused silica fibres. Characterisation of the new fused silica SPR sensors showed that the sensitivity of the sensing probe was improved, however, the spectral linewidth of the SPR signature was broadened, in agreement with the theoretical modelling. Nevertheless, analysis of the capability of the silica fibre based SPR sensors demonstrated potential for this platform in biological studies. To improve the resolution without affecting the sensitivity of a sensor, smaller core fibres can be used. However, using conventional small core fibres or fibre tapers is challenging due to their fragility and the requirement for fibre post processing to access the core. To overcome these difficulties, an SPR sensor based on a silica microstructured optical fibre with a core exposed along the entire fibre length was fabricated. Exposed Core Fibres (ECFs) have small cores that are supported by thin struts inside of a larger support structure, providing mechanical robustness to the fibre. The ECF SPR sensing platform doubled the improvement in the spectral linewidth when compared to the large core fused silica fibre sensor, without compromising sensitivity. Finally, the demonstration of Metal Enhanced Fluorescence (MEF) phenomena is presented. The effect of rough metallic coatings on the enhancement of fluorescence emission is investigated in planar glass substrates, showing significant improvement in emission when compared to smooth metal films. An optical fibre based MEF platform was demonstrated to illustrate the potential of rough metal coatings on a fibre for surface enhanced optical phenomena. This work is the first systematic study of a scattering based SPR sensing platform. This architecture addresses existing practical limitations associated with current SPR technologies, including but not limited to bulk design and affordability. Additionally, performance enhancement of the sensing probes is achieved through the use of alternative fibre material and geometry. The demonstrated performance improvements are not class-leading compared to commercial biosensing devices, however, the performance is in agreement with the theoretical analysis which provides a pathway for further improvement. This demonstrated that the scattering based SPR fibre platform is a practical new approach that offers the advantages of high sensitivity and signal to noise ratio, and low resolution, with the capability to improve the detection limit of SPR devices. Most importantly, this novel SPR interrogation approach allows the incorporation of two different sensing techniques, SPR and fluorescence, in the same fibre device, which opens pathways for novel biosensing applications combining the two phenomena.Thesis (Ph.D.)--University of Adelaide, School of Physical Sciences, 2017

    EUROSENSORS XVII : book of abstracts

    Get PDF
    Fundação Calouste Gulbenkien (FCG).Fundação para a Ciência e a Tecnologia (FCT)

    Laser-induced forward transfer (LIFT) of water soluble polyvinyl alcohol (PVA) polymers for use as support material for 3D-printed structures

    Get PDF
    The additive microfabrication method of laser-induced forward transfer (LIFT) permits the creation of functional microstructures with feature sizes down to below a micrometre [1]. Compared to other additive manufacturing techniques, LIFT can be used to deposit a broad range of materials in a contactless fashion. LIFT features the possibility of building out of plane features, but is currently limited to 2D or 2½D structures [2–4]. That is because printing of 3D structures requires sophisticated printing strategies, such as mechanical support structures and post-processing, as the material to be printed is in the liquid phase. Therefore, we propose the use of water-soluble materials as a support (and sacrificial) material, which can be easily removed after printing, by submerging the printed structure in water, without exposing the sample to more aggressive solvents or sintering treatments. Here, we present studies on LIFT printing of polyvinyl alcohol (PVA) polymer thin films via a picosecond pulsed laser source. Glass carriers are coated with a solution of PVA (donor) and brought into proximity to a receiver substrate (glass, silicon) once dried. Focussing of a laser pulse with a beam radius of 2 µm at the interface of carrier and donor leads to the ejection of a small volume of PVA that is being deposited on a receiver substrate. The effect of laser pulse fluence , donor film thickness and receiver material on the morphology (shape and size) of the deposits are studied. Adhesion of the deposits on the receiver is verified via deposition on various receiver materials and via a tape test. The solubility of PVA after laser irradiation is confirmed via dissolution in de-ionised water. In our study, the feasibility of the concept of printing PVA with the help of LIFT is demonstrated. The transfer process maintains the ability of water solubility of the deposits allowing the use as support material in LIFT printing of complex 3D structures. Future studies will investigate the compatibility (i.e. adhesion) of PVA with relevant donor materials, such as metals and functional polymers. References: [1] A. Piqué and P. Serra (2018) Laser Printing of Functional Materials. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA. [2] R. C. Y. Auyeung, H. Kim, A. J. Birnbaum, M. Zalalutdinov, S. A. Mathews, and A. Piqué (2009) Laser decal transfer of freestanding microcantilevers and microbridges, Appl. Phys. A, vol. 97, no. 3, pp. 513–519. [3] C. W. Visser, R. Pohl, C. Sun, G.-W. Römer, B. Huis in ‘t Veld, and D. Lohse (2015) Toward 3D Printing of Pure Metals by Laser-Induced Forward Transfer, Adv. Mater., vol. 27, no. 27, pp. 4087–4092. [4] J. Luo et al. (2017) Printing Functional 3D Microdevices by Laser-Induced Forward Transfer, Small, vol. 13, no. 9, p. 1602553

    Cumulative index to NASA Tech Briefs, 1986-1990, volumes 10-14

    Get PDF
    Tech Briefs are short announcements of new technology derived from the R&D activities of the National Aeronautics and Space Administration. These briefs emphasize information considered likely to be transferrable across industrial, regional, or disciplinary lines and are issued to encourage commercial application. This cumulative index of Tech Briefs contains abstracts and four indexes (subject, personal author, originating center, and Tech Brief number) and covers the period 1986 to 1990. The abstract section is organized by the following subject categories: electronic components and circuits, electronic systems, physical sciences, materials, computer programs, life sciences, mechanics, machinery, fabrication technology, and mathematics and information sciences
    corecore