54 research outputs found

    Image Restoration for Remote Sensing: Overview and Toolbox

    Full text link
    Remote sensing provides valuable information about objects or areas from a distance in either active (e.g., RADAR and LiDAR) or passive (e.g., multispectral and hyperspectral) modes. The quality of data acquired by remotely sensed imaging sensors (both active and passive) is often degraded by a variety of noise types and artifacts. Image restoration, which is a vibrant field of research in the remote sensing community, is the task of recovering the true unknown image from the degraded observed image. Each imaging sensor induces unique noise types and artifacts into the observed image. This fact has led to the expansion of restoration techniques in different paths according to each sensor type. This review paper brings together the advances of image restoration techniques with particular focuses on synthetic aperture radar and hyperspectral images as the most active sub-fields of image restoration in the remote sensing community. We, therefore, provide a comprehensive, discipline-specific starting point for researchers at different levels (i.e., students, researchers, and senior researchers) willing to investigate the vibrant topic of data restoration by supplying sufficient detail and references. Additionally, this review paper accompanies a toolbox to provide a platform to encourage interested students and researchers in the field to further explore the restoration techniques and fast-forward the community. The toolboxes are provided in https://github.com/ImageRestorationToolbox.Comment: This paper is under review in GRS

    Study of the speckle noise effects over the eigen decomposition of polarimetric SAR data: a review

    No full text
    This paper is focused on considering the effects of speckle noise on the eigen decomposition of the co- herency matrix. Based on a perturbation analysis of the matrix, it is possible to obtain an analytical expression for the mean value of the eigenvalues and the eigenvectors, as well as for the Entropy, the Anisotroopy and the dif- ferent a angles. The analytical expressions are compared against simulated polarimetric SAR data, demonstrating the correctness of the different expressions.Peer ReviewedPostprint (published version

    Approches tomographiques structurelles pour l'analyse du milieu urbain par tomographie SAR THR : TomoSAR

    No full text
    SAR tomography consists in exploiting multiple images from the same area acquired from a slightly different angle to retrieve the 3-D distribution of the complex reflectivity on the ground. As the transmitted waves are coherent, the desired spatial information (along with the vertical axis) is coded in the phase of the pixels. Many methods have been proposed to retrieve this information in the past years. However, the natural redundancies of the scene are generally not exploited to improve the tomographic estimation step. This Ph.D. presents new approaches to regularize the estimated reflectivity density obtained through SAR tomography by exploiting the urban geometrical structures.La tomographie SAR exploite plusieurs acquisitions d'une mĂȘme zone acquises d'un point de vue lĂ©gerement diffĂ©rent pour reconstruire la densitĂ© complexe de rĂ©flectivitĂ© au sol. Cette technique d'imagerie s'appuyant sur l'Ă©mission et la rĂ©ception d'ondes Ă©lectromagnĂ©tiques cohĂ©rentes, les donnĂ©es analysĂ©es sont complexes et l'information spatiale manquante (selon la verticale) est codĂ©e dans la phase. De nombreuse mĂ©thodes ont pu ĂȘtre proposĂ©es pour retrouver cette information. L'utilisation des redondances naturelles Ă  certains milieux n'est toutefois gĂ©nĂ©ralement pas exploitĂ©e pour amĂ©liorer l'estimation tomographique. Cette thĂšse propose d'utiliser l'information structurelle propre aux structures urbaines pour rĂ©gulariser les densitĂ©s de rĂ©flecteurs obtenues par cette technique

    3-D STRUCTURE OF INDIAN FORESTS – PERSPECTIVES FROM EXPERIMENTS ON THE FIRST FULLY-POLARIMETRIC TANDEM-X TOMOGRAMS

    Get PDF
    This paper provides a first hand view of the 3-D structure of the forests when viewed by X-band SAR data. Tomograms are generated using multi-polarimetric space-borne TerraSAR-X/TanDEM-X acquisitions and analysed over a multi-species forest range. The paper analysed these generated tomograms and puts forth-interesting observations of these unique forest species. The high- and low-canopy density plantations provide unique tomograms and vertical structure profiles where the effect of varying extinction is observed in X-band. Further, the scattering powers are shown relative to their backscatter powers. In-depth analysis in currently underway and would be reported in future

    Polarimetric Synthetic Aperture Radar

    Get PDF
    This open access book focuses on the practical application of electromagnetic polarimetry principles in Earth remote sensing with an educational purpose. In the last decade, the operations from fully polarimetric synthetic aperture radar such as the Japanese ALOS/PalSAR, the Canadian Radarsat-2 and the German TerraSAR-X and their easy data access for scientific use have developed further the research and data applications at L,C and X band. As a consequence, the wider distribution of polarimetric data sets across the remote sensing community boosted activity and development in polarimetric SAR applications, also in view of future missions. Numerous experiments with real data from spaceborne platforms are shown, with the aim of giving an up-to-date and complete treatment of the unique benefits of fully polarimetric synthetic aperture radar data in five different domains: forest, agriculture, cryosphere, urban and oceans

    Single-Look SAR Tomography of Urban Areas

    Get PDF
    Synthetic aperture radar (SAR) tomography (TomoSAR) is a multibaseline interferometric technique that estimates the power spectrum pattern (PSP) along the perpendicular to the line-ofsight (PLOS) direction. TomoSAR achieves the separation of individual scatterers in layover areas, allowing for the 3D representation of urban zones. These scenes are typically characterized by buildings of different heights, with layover between the facades of the higher structures, the rooftop of the smaller edifices and the ground surface. Multilooking, as required by most spectral estimation techniques, reduces the azimuth-range spatial resolution, since it is accomplished through the averaging of adjacent values, e.g., via Boxcar filtering. Consequently, with the aim of avoiding the spatial mixture of sources due to multilooking, this article proposes a novel methodology to perform single-look TomoSAR over urban areas. First, a robust version of Capon is applied to focus the TomoSAR data, being robust against the rank-deficiencies of the data covariance matrices. Afterward, the recovered PSP is refined using statistical regularization, attaining resolution enhancement, suppression of artifacts and reduction of the ambiguity levels. The capabilities of the proposed methodology are demonstrated by means of strip-map airborne data of the Jet Propulsion Laboratory (JPL) and the National Aeronautics and Space Administration (NASA), acquired by the uninhabited aerial vehicle SAR (UAVSAR) system over the urban area of Munich, Germany in 2015. Making use of multipolarization data [horizontal/horizontal (HH), horizontal/vertical (HV) and vertical/vertical (VV)], a comparative analysis against popular focusing techniques for urban monitoring (i.e., matched filtering, Capon and compressive sensing (CS)) is addressed

    Very High Resolution Tomographic SAR Inversion for Urban Infrastructure Monitoring — A Sparse and Nonlinear Tour

    Get PDF
    The topic of this thesis is very high resolution (VHR) tomographic SAR inversion for urban infrastructure monitoring. To this end, SAR tomography and differential SAR tomography are demonstrated using TerraSAR-X spotlight data for providing 3-D and 4-D (spatial-temporal) maps of an entire high rise city area including layover separation and estimation of deformation of the buildings. A compressive sensing based estimator (SL1MMER) tailored to VHR SAR data is developed for tomographic SAR inversion by exploiting the sparsity of the signal. A systematic performance assessment of the algorithm is performed regarding elevation estimation accuracy, super-resolution and robustness. A generalized time warp method is proposed which enables differential SAR tomography to estimate multi-component nonlinear motion. All developed methods are validated with both simulated and extensive processing of large volumes of real data from TerraSAR-X

    TomoSAR Mapping of 3D Forest Structure: Contributions of L-Band Configurations

    Get PDF
    Synthetic Aperture Radar (SAR) measurements are unique for mapping forest 3D structure and its changes in time. Tomographic SAR (TomoSAR) configurations exploit this potential by reconstructing the 3D radar reflectivity. The frequency of the SAR measurements is one of the main parameters determining the information content of the reconstructed reflectivity in terms of penetration and sensitivity to the individual vegetation elements. This paper attempts to review and characterize the structural information content of L-band TomoSAR reflectivity reconstructions, and their potential to forest structure mapping. First, the challenges in the accurate TomoSAR reflectivity reconstruction of volume scatterers (which are expected to dominate at L-band) and to extract physical structure information from the reconstructed reflectivity is addressed. Then, the L-band penetration capability is directly evaluated by means of the estimation performance of the sub-canopy ground topography. The information content of the reconstructed reflectivity is then evaluated in terms of complementary structure indices. Finally, the dependency of the TomoSAR reconstruction and of its structural information to both the TomoSAR acquisition geometry and the temporal change of the reflectivity that may occur in the time between the TomoSAR measurements in repeat-pass or bistatic configurations is evaluated. The analysis is supported by experimental results obtained by processing airborne acquisitions performed over temperate forest sites close to the city of Traunstein in the south of Germany
    • 

    corecore