3,460 research outputs found

    High-Resolution Road Vehicle Collision Prediction for the City of Montreal

    Full text link
    Road accidents are an important issue of our modern societies, responsible for millions of deaths and injuries every year in the world. In Quebec only, in 2018, road accidents are responsible for 359 deaths and 33 thousands of injuries. In this paper, we show how one can leverage open datasets of a city like Montreal, Canada, to create high-resolution accident prediction models, using big data analytics. Compared to other studies in road accident prediction, we have a much higher prediction resolution, i.e., our models predict the occurrence of an accident within an hour, on road segments defined by intersections. Such models could be used in the context of road accident prevention, but also to identify key factors that can lead to a road accident, and consequently, help elaborate new policies. We tested various machine learning methods to deal with the severe class imbalance inherent to accident prediction problems. In particular, we implemented the Balanced Random Forest algorithm, a variant of the Random Forest machine learning algorithm in Apache Spark. Interestingly, we found that in our case, Balanced Random Forest does not perform significantly better than Random Forest. Experimental results show that 85% of road vehicle collisions are detected by our model with a false positive rate of 13%. The examples identified as positive are likely to correspond to high-risk situations. In addition, we identify the most important predictors of vehicle collisions for the area of Montreal: the count of accidents on the same road segment during previous years, the temperature, the day of the year, the hour and the visibility

    Estimation of Road Accident Risk with Machine Learning

    Get PDF
    Road accidents are an important issue for our societies, responsible for millions of deaths and injuries every year representing a very high cost for society. In this thesis, we evaluate how machine learning can be used to estimate the risk of accidents in order to help address this issue. Previous studies have shown that machine learning can be used to identify the times and areas of a road network with increased risk of road accidents using road characteristics, weather statistics, and date-based features. In the first part of this thesis, we evaluate whether more precise models estimating the risk for smaller areas can still reach interesting performances. We assemble several public datasets and build a relatively accurate model estimating the risk of accidents within an hour on a road segment defined by intersections. In the second part, we evaluate whether data collected by vehicle sensors during driving can be used to estimate the risk of accidents of a driver. We explore two different approaches. With the first approach, we extract features from the time series and attempt to estimate the risk based on these features using classical algorithms. With the second approach, we design a neural network directly using the time series data to estimate the risk. After extensively tuning our models, we managed to reach encouraging performances on the validation set, however, the performances of our two models on the test set were disappointing. This led us to believe that this task might not be feasible, at least with the dataset used

    Spatio-Temporal Analysis of Highway Congestion and Accidents: A Case Study of Interstate 285 in Georgia

    Get PDF
    Road traffic crashes threaten thousands of drivers every day and significant efforts have been put forth to reduce the number of traffic crashes and their impact. Traffic congestion could be both a result of and a contributing factor to traffic crashes. The aim of this study is to investigate spatio-temporal traffic congestion and crash patterns to gain a better understanding of the causation of congestion and accidents, and their interaction. The Interstate 285 (I-285) in Georgia was used as a case study. With the aid of Geographic Information Systems (GIS), spatial clustering and densities of accidents were performed by following Anselin Local Moran’s I method of spatial auto correlation. The results indicated that the location of high-high accident clusters was in the northern half of the I-285 for all crash types. Additionally, geometric and traffic-related variables were correlated with accidents using logistic regression. The results showed that road segments involving merging, diverging, or weaving lanes had a positive correlation with the number of accidents. Specifically, the merging segments exhibited the highest crash frequency, followed by weaving and diverging segments. On the other hand, the road curvature did not play a significant role in crash occurrence, which is likely due to the gentleness of the road curvatures along the I-285 loop. However, the impact of acceleration on crash frequency remained inconclusive. It appeared that a lower average traffic speed correlated with a higher crash frequency, which may be due to a slow-down condition prior to crash occurrence

    Design and Implementation of Intelligent Traffic-Management System for Smart Cities using Roaming Agent and Deep Neural Network (RAD2N)

    Get PDF
    In metropolitan areas, the exponential growth in quantity of vehicles has instigated gridlock, pollution, and delays in the transportation of freight. IoT is the modern revolution which pushes the world towards intelligent management systems and automated procedures. This makes a significant contribution to automation and intelligent societies. Traffic regulation and effective congestion management assist conserve many priceless resources. In order to recognize, collect and send data, autonomous vehicles are furnished with IoT powered Intelligent Traffic Management System (ITMS) having a set of sensors.  Moreover, machine learning (ML) algorithms can also be employed to enhance the transportation system.  Traffic jams, delays, and a high death rate are the results of the problems that the current transport management systems face.  In this paper, an active traffic control for VANET is proposed which merges Roaming Agents (RA) with deep neural networks (DNN). The effectiveness of the DNN with RA (RAD2N) routing method in VANETs is evaluated experimentally and compared with the traditional ML and other DL routing algorithms. Several traffic congestion indicators, including delay, packet delivery ratio (PDR) and throughput are used to validate RAD2N. The outcomes demonstrate that the proposed approach delivers lower latency and energy consumption

    A Simulation Environment with Reduced Reality Gap for Testing Autonomous Vehicles

    Get PDF
    In order to facilitate acceptance and ensure safety, autonomous vehicles must be tested not only in typical and relatively safe scenarios but also in dangerous and less frequent scenarios. Recent pedestrian fatalities caused by test vehicles of the front-running giants like Google and Tesla suffice the fact that Autonomous Vehicle technology is not yet mature enough and still needs rigorous exposure to a wide range of traffic, landscape, and natural conditions on which the Autonomous Vehicles can be trained on to perform as expected in real traffic conditions. Simulation Environments have been considered as an efficient, safe, flexible and cost-effective option for the training, testing, and validation of Autonomous Vehicle technology. While ad-hoc task-specific use of simulation in Autonomous Driving research is widespread, simulation platforms that bridge the gap between simulation and reality are limited. This research proposes to set up a highly realistic simulation environment (using CARLA driving simulator) to generate realistic data to be used for Autonomous Driving research. Our system is able to recreate the original traffic scenarios based on prior information about the traffic scene. Furthermore, the system will allow to make changes to the original scenarios and create various desired testing scenarios by varying the parameters of traffic actors, such as location, trajectory, speed, motion states, etc. and hence collect more data with ease

    Sensor Technologies for Intelligent Transportation Systems

    Get PDF
    Modern society faces serious problems with transportation systems, including but not limited to traffic congestion, safety, and pollution. Information communication technologies have gained increasing attention and importance in modern transportation systems. Automotive manufacturers are developing in-vehicle sensors and their applications in different areas including safety, traffic management, and infotainment. Government institutions are implementing roadside infrastructures such as cameras and sensors to collect data about environmental and traffic conditions. By seamlessly integrating vehicles and sensing devices, their sensing and communication capabilities can be leveraged to achieve smart and intelligent transportation systems. We discuss how sensor technology can be integrated with the transportation infrastructure to achieve a sustainable Intelligent Transportation System (ITS) and how safety, traffic control and infotainment applications can benefit from multiple sensors deployed in different elements of an ITS. Finally, we discuss some of the challenges that need to be addressed to enable a fully operational and cooperative ITS environment

    Enhancing Energy Efficiency in Connected Vehicles Via Access to Traffic Signal Information

    Get PDF
    This dissertation expounds on algorithms that can deterministically or proba-bilistically predict the future Signal Phase and Timing (SPAT) of a traffic signal by relying on real-time information from numerous vehicles and traffic infrastructure, historical data, and the computational power of a back-end computing cluster. When made available on an open server, predictive information about traffic signals’ states can be extremely valuable in enabling new fuel efficiency and safety functionalities in connected vehicles: Predictive Cruise Control (PCC) can use the predicted timing plan to calculate globally optimal velocity trajectories that reduce idling time at red signals and therefore improve fuel eïŹƒciency and reduce emissions. Advanced engine management strategies can shut down the engine in anticipation of a long idling interval at red. Intersection collision avoidance is another functionality that can benefit from the prediction. We start by exploring a globally optimal velocity planning algorithm through the use of Dynamic Programming (DP), and provide to it three levels of traffic signal information - none, real-time only, and full-future information. The no-information case represents the average driver today, and is expected to provide an energy efficiency minimum or baseline. The full-information case represents a driver with full and exact knowledge of the future red and green times of all the traffic signals along their route, and is expected to provide an energy efficiency maximum. We propose a probabilistic method that seeks to optimize fuel efficiency when only real-time only information is available with the goal of obtaining fuel efficiency as close to the full-future knowledge example as possible. We used Monte-Carlo simulations to evaluate whether the fuel efficiency gains found were merely the result of lucky case studies or whether they were statistically significant; we found in related case studies that up to 16% gains in fuel economy were possible. While these results were promising, the delivery of relevant and accurate future traffic signal phase and timing information remained an unsolved problem. The next step we took was towards building The next step we took was towards building traffic signal prediction models. We took several prescient techniques from the data mining and machine learning ïŹelds, and adapted them to our purposes in the exploration of massive amounts of data recorded from traffic Management Centers (TMCs). This manuscript evaluates Transition Probability Modeling, Decision Tree, Multi-Linear Regression, and Neural Network machine learning methods for use in the prediction of traffic Signal Phase and Timing (SPaT) information. signal prediction models. We took several prescient techniques from the data mining and machine learning ïŹelds, and adapted them to our purposes in the exploration of massive amounts of data recorded from traffic Management Centers (TMCs). This manuscript evaluates Transition Probability Modeling, Decision Tree, Multi-Linear Regression, and Neural Network machine learning methods for use in the prediction of traffic Signal Phase and Timing (SPaT) information. Finally, we evaluated the inïŹ‚uence of providing SPaT data to vehicles. To that end, we investigated both smartphone and in-vehicle proof-of-concepts. An in-vehicle velocity recommendation application has been tested in two cities: San Jose, California and San Francisco, California. The two test locations used two different data sources: data directly from a TMC, and data crowdsourced from public transit bus routes, respectively. A total of 14 test drivers were used to evaluate the effectiveness of the algorithm. In San Jose, the algorithm was found to produce a 8.4% improvement in fuel economy. In San Francisco, traffic conditions were not conducive to testing as the driver was unable to signiïŹcantly vary his speed to follow the recommendation algorithm, and a negligible difference in fuel economy was observed. However, it did provide an opportunity to evaluate the quality of data coming from the crowdsourced data algorithms. Predicted phase timing com-pared to camera-recorded ground truth data indicated an RMS difference (error) in prediction of approximately 4.1 seconds

    Vulnerable road users and connected autonomous vehicles interaction: a survey

    Get PDF
    There is a group of users within the vehicular traffic ecosystem known as Vulnerable Road Users (VRUs). VRUs include pedestrians, cyclists, motorcyclists, among others. On the other hand, connected autonomous vehicles (CAVs) are a set of technologies that combines, on the one hand, communication technologies to stay always ubiquitous connected, and on the other hand, automated technologies to assist or replace the human driver during the driving process. Autonomous vehicles are being visualized as a viable alternative to solve road accidents providing a general safe environment for all the users on the road specifically to the most vulnerable. One of the problems facing autonomous vehicles is to generate mechanisms that facilitate their integration not only within the mobility environment, but also into the road society in a safe and efficient way. In this paper, we analyze and discuss how this integration can take place, reviewing the work that has been developed in recent years in each of the stages of the vehicle-human interaction, analyzing the challenges of vulnerable users and proposing solutions that contribute to solving these challenges.This work was partially funded by the Ministry of Economy, Industry, and Competitiveness of Spain under Grant: Supervision of drone fleet and optimization of commercial operations flight plans, PID2020-116377RB-C21.Peer ReviewedPostprint (published version

    A new microsimulation model for the evaluation of traffic safety performances

    Get PDF
    Some papers have been recently presented (Cunto and Saccomanno 2007, Cunto and Saccomanno 2008, Saccomanno et al. 2008) on the potential of traffic microsimulation for the analysis of road safety. In particular, studies have confirmed that the reproduction by simulation of user behaviour under different flow and geometry conditions, can identify a potential incident hazard and allow to take appropriate countermeasures at specific points of the road network. The objective of this paper is to assess the validity of this approach; for this reason a microsimulation model and an automatic video detection system have been developed. The microscopic model allows the estimation of road safety performance through a series of indicators (Deceleration Rate to Avoid Crash, Time to Collision, Proportion of Stopping Distance), representing interactions in real time, between different pairs of vehicles belonging to the traffic stream. When these indicators take a certain critical value, a possible accident scenario is identified. The microscopic simulation model is used combined with a new video image traffic detection algorithm to calculate vehicle trajectories. Microscopic traffic flow parameters obtained by video detection are used to calibrate the microsimulation model, and the safety performance indicators obtained by the real vehicles trajectories can be compared with simulated scenarios where safety performance indicators are obtained on the simulated trajectories. Results indicate that the methodology can be useful in the estimation of safety performance indicators and in evaluating traffic control measures
    • 

    corecore