154 research outputs found

    Data compression and transmission aspects of panoramic videos

    Get PDF
    Panoramic videos are effective means for representing static or dynamic scenes along predefined paths. They allow users to change their viewpoints interactively at points in time or space defined by the paths. High-resolution panoramic videos, while desirable, consume a significant amount of storage and bandwidth for transmission. They also make real-time decoding computationally very intensive. This paper proposes efficient data compression and transmission techniques for panoramic videos. A high-performance MPEG-2-like compression algorithm, which takes into account the random access requirements and the redundancies of panoramic videos, is proposed. The transmission aspects of panoramic videos over cable networks, local area networks (LANs), and the Internet are also discussed. In particular, an efficient advanced delivery sharing scheme (ADSS) for reducing repeated transmission and retrieval of frequently requested video segments is introduced. This protocol was verified by constructing an experimental VOD system consisting of a video server and eight Pentium 4 computers. Using the synthetic panoramic video Village at a rate of 197 kb/s and 7 f/s, nearly two-thirds of the memory access and transmission bandwidth of the video server were saved under normal network traffic.published_or_final_versio

    A virtual reality system using the concentric mosaic: Construction, rendering, and data compression

    Get PDF
    This paper proposes a new image-based rendering (IBR) technique called "concentric mosaic" for virtual reality applications. IBR using the plenoptic function is an efficient technique for rendering new views of a scene from a collection of sample images previously captured. It provides much better image quality and lower computational requirement for rendering than conventional three-dimensional (3-D) model-building approaches. The concentric mosaic is a 3-D plenoptic function with viewpoints constrained on a plane. Compared with other more sophisticated four-dimensional plenoptic functions such as the light field and the lumigraph, the file size of a concentric mosaic is much smaller. In contrast to a panorama, the concentric mosaic allows users to move freely in a circular region and observe significant parallax and lighting changes without recovering the geometric and photometric scene models. The rendering of concentric mosaics is very efficient, and involves the reordering and interpolating of previously captured slit images in the concentric mosaic. It typically consists of hundreds of high-resolution images which consume a significant amount of storage and bandwidth for transmission. An MPEG-like compression algorithm is therefore proposed in this paper taking into account the access patterns and redundancy of the mosaic images. The compression algorithms of two equivalent representations of the concentric mosaic, namely the multiperspective panoramas and the normal setup sequence, are investigated. A multiresolution representation of concentric mosaics using a nonlinear filter bank is also proposed.published_or_final_versio

    Survey of image-based representations and compression techniques

    Get PDF
    In this paper, we survey the techniques for image-based rendering (IBR) and for compressing image-based representations. Unlike traditional three-dimensional (3-D) computer graphics, in which 3-D geometry of the scene is known, IBR techniques render novel views directly from input images. IBR techniques can be classified into three categories according to how much geometric information is used: rendering without geometry, rendering with implicit geometry (i.e., correspondence), and rendering with explicit geometry (either with approximate or accurate geometry). We discuss the characteristics of these categories and their representative techniques. IBR techniques demonstrate a surprising diverse range in their extent of use of images and geometry in representing 3-D scenes. We explore the issues in trading off the use of images and geometry by revisiting plenoptic-sampling analysis and the notions of view dependency and geometric proxies. Finally, we highlight compression techniques specifically designed for image-based representations. Such compression techniques are important in making IBR techniques practical.published_or_final_versio

    Cubic-panorama image dataset analysis for storage and transmission

    Full text link

    The compression issues of panoramic video

    Get PDF
    The paper proposes efficient data compression techniques for panoramic video. Panoramic videos have been used as a means for representing dynamic scenes or paths along a static environment. They allow the user to change viewpoints interactively at a point in time or space. High-resolution panoramic videos, while desirable, consume a significant amount of storage and bandwidth for transmission, and make real-time decoding very computationally intensive. A high performance MPEG-like compression algorithm, which takes into account the random access requirements and the redundancies of the panoramic video, is presented. The transmission aspects of panoramic video over cable network, LAN and Internet are also briefly discussed.published_or_final_versio

    The Plenoptic videos: Capturing, Rendering and Compression

    Get PDF
    This paper presents a system for capturing and rendering a dynamic image-based representation called the plenoptic videos. It is a simplified version of light fields for dynamic environment, where user viewpoints are constrained along the camera plane of a linear array of video cameras. The system consists of a camera array of 8 Sony CCX-Z11 CCD cameras and eight Pentium 41.8 GHz computers connected together through a 100 baseT LAN. Important issues such as multiple camera calibration, real-time compression, decompression and rendering are addressed. Experimental results demonstrated the usefulness of the proposed parallel processing based system in capturing and rendering high quality dynamic image-based representation using off-the-shelf equipment, and its potential applications in visualization and immersive television systems.published_or_final_versio

    Image-based rendering and synthesis

    Get PDF
    Multiview imaging (MVI) is currently the focus of some research as it has a wide range of applications and opens up research in other topics and applications, including virtual view synthesis for three-dimensional (3D) television (3DTV) and entertainment. However, a large amount of storage is needed by multiview systems and are difficult to construct. The concept behind allowing 3D scenes and objects to be visualized in a realistic way without full 3D model reconstruction is image-based rendering (IBR). Using images as the primary substrate, IBR has many potential applications including for video games, virtual travel and others. The technique creates new views of scenes which are reconstructed from a collection of densely sampled images or videos. The IBR concept has different classification such as knowing 3D models and the lighting conditions and be rendered using conventional graphic techniques. Another is lightfield or lumigraph rendering which depends on dense sampling with no or very little geometry for rendering without recovering the exact 3D-models.published_or_final_versio

    On the data compression and transmission aspects of panoramic video

    Get PDF
    This paper proposes efficient data compression and transmission techniques for panoramic video. Panoramic videos have been used as a means for representing dynamic scenes or paths along a static environment. They allow the user to change viewpoints interactively at a point in time or space. High-resolution panoramic videos, while desirable, consume a significant amount of storage and bandwidth for transmission, and make real-time decoding very compute-intensive. A high performance MPEG-like compression algorithm, which takes into account the random access requirements and the redundancies of the panoramic video, is presented. The transmission aspects of panoramic video over cable network, LAN and Internet are also briefly discussed.published_or_final_versio

    An object-based approach to plenoptic videos

    Get PDF
    This paper proposes an object-based approach to plenoptic videos, where the plenoptic video sequences are segmented into image-based rendering (IBR) objects each with its image sequence, depth map and other relevant information such as shape information. This allows desirable functionalities such as scalability of contents, error resilience, and interactivity with individual IBR objects to be supported. A portable capturing system consisting of two linear camera arrays, each hosting 6 JVC video cameras, was developed to verify the proposed approach. Rendering and compression results of real-world scenes demonstrate the usefulness and good quality of the proposed approach. © 2005 IEEE.published_or_final_versio

    Mobile graphics: SIGGRAPH Asia 2017 course

    Get PDF
    Peer ReviewedPostprint (published version
    corecore