2,975 research outputs found

    The agricultural impact of the 2015–2016 floods in Ireland as mapped through Sentinel 1 satellite imagery

    Get PDF
    peer-reviewedIrish Journal of Agricultural and Food Research | Volume 58: Issue 1 The agricultural impact of the 2015–2016 floods in Ireland as mapped through Sentinel 1 satellite imagery R. O’Haraemail , S. Green and T. McCarthy DOI: https://doi.org/10.2478/ijafr-2019-0006 | Published online: 11 Oct 2019 PDF Abstract Article PDF References Recommendations Abstract The capability of Sentinel 1 C-band (5 cm wavelength) synthetic aperture radio detection and ranging (RADAR) (abbreviated as SAR) for flood mapping is demonstrated, and this approach is used to map the extent of the extensive floods that occurred throughout the Republic of Ireland in the winter of 2015–2016. Thirty-three Sentinel 1 images were used to map the area and duration of floods over a 6-mo period from November 2015 to April 2016. Flood maps for 11 separate dates charted the development and persistence of floods nationally. The maximum flood extent during this period was estimated to be ~24,356 ha. The depth of rainfall influenced the magnitude of flood in the preceding 5 d and over more extended periods to a lesser degree. Reduced photosynthetic activity on farms affected by flooding was observed in Landsat 8 vegetation index difference images compared to the previous spring. The accuracy of the flood map was assessed against reports of flooding from affected farms, as well as other satellite-derived maps from Copernicus Emergency Management Service and Sentinel 2. Monte Carlo simulated elevation data (20 m resolution, 2.5 m root mean square error [RMSE]) were used to estimate the flood’s depth and volume. Although the modelled flood height showed a strong correlation with the measured river heights, differences of several metres were observed. Future mapping strategies are discussed, which include high–temporal-resolution soil moisture data, as part of an integrated multisensor approach to flood response over a range of spatial scales

    Towards the sequential assimilation of SAR-derived water stages into hydraulic models using the Particle Filter : proof of concept

    Get PDF
    With the onset of new satellite radar constellations (e.g. Sentinel-1) and advances in computational science (e.g. grid computing) enabling the supply and processing of multimission satellite data at a temporal frequency that is compatible with real-time flood forecasting requirements, this study presents a new concept for the sequential assimilation of Synthetic Aperture Radar (SAR)-derived water stages into coupled hydrologic-hydraulic models. The proposed methodology consists of adjusting storages and fluxes simulated by a coupled hydrologic-hydraulic model using a Particle Filterbased data assimilation scheme. Synthetic observations of water levels, representing satellite measurements, are assimilated into the coupled model in order to investigate the performance of the proposed assimilation scheme as a function of both accuracy and frequency of water level observations. The use of the Particle Filter provides flexibility regarding the form of the probability densities of both model simulations and remote sensing observations. We illustrate the potential of the proposed methodology using a twin experiment over a widely studied river reach located in the Grand-Duchy of Luxembourg. The study demonstrates that the Particle Filter algorithm leads to significant uncertainty reduction of water level and discharge at the time step of assimilation. However, updating the storages of the model only improves the model forecast over a very short time horizon. A more effective way of updating thus consists in adjusting both states and inputs. The proposed methodology, which consists in updating the biased forcing of the hydraulic model using information on model errors that is inferred from satellite observations, enables persistent model improvement. The present schedule of satellite radar missions is such that it is likely that there will be continuity for SAR-based operational water management services. This research contributes to evolve reactive flood management into systematic or quasi-systematic SAR-based flood monitoring services

    Multisensor systems and flood risk management. Application to the Danube Delta using radar and hyperspectral imagery

    Get PDF
    International audienceAt the beginning of the 21st century, flood risk still represents a major world threat ( 60% of natural disasters are initiated by storms ) and the climate warming might even accentuate this phenomenon in the future. In Europe, despite all the policies in place and the measures taken during the past decades, large floods have occurred almost every year. The news regularly confirms this reality and the serious threat posed by flood risks in Europe. This paper presents an application to the Danube Delta exploiting radar imagery ENVISAT/ASAR and hyperspectral imagery CHRIS/PROBA for mapping flooded and floodable areas during the events of spring 2006. The uses of multisensor systems, such as radar and hyperspectral imagers, contribute to a better comprehension of floods in this wetland, their impacts, and risk management and sustainable development in the delta. In the section Risk management, this paper approaches the methodological aspects related to the characterization of the flood hazard whereas in the section Forecasting we will focus on the knowledge and modeling of the Land cover. The method of kernels, particularly adapted to the highlighting of the special-temporal variations - Support Vector Machine - and the methods based on the principle of the vague logic ( object-oriented classifications ) will be implemented so as to obtain the information plan of the spatial data.En ce début de 21e siècle, le risque d'inondation constitue encore le risque majeur au monde ( avec les tempêtes, les inondations représentent 60% des catastrophes naturelles ) et le réchauffement climatique pourrait encore renforcer ce phénomène à l'avenir. En Europe, malgré toutes les politiques et les mesures prises, au cours des dernières décennies, de grandes inondations ont lieu quasiment chaque année. Les actualités confirment régulièrement la réalité et la prégnance du risque d'inondation en Europe. Cet article présente une application concernant le risque d'inondation durant les événements du printemps 2006 dans le delta du Danube en exploitant des images radar ENVISAT/ASAR et l'imagerie hyperspectrale CHRIS/PROBA en matière d'analyse et de cartographie des zones inondées et de la classe de l'inondable. L'utilisation couplée des techniques spatiales ( radar et hyperspectrale ) pourrait contribuer à une meilleure compréhension des phénomènes liés aux inondations dans le Delta du Danube, ainsi qu'à la gestion de ce risque dans le delta et à son développement durable. Dans la partie Gestion du risque, ce travail aborde des aspects méthodologiques liés à la caractérisation de l'aléa de l'inondation tandis que dans la partie Prévision, la connaissance et la modélisation de l'Occupation du sol seront abordés. Des méthodes des noyaux ( kernels ), adaptées en particulier à la mise en évidence des variations spatio-temporelles - Suport Vector Machine - ainsi que des méthodes basées sur le principe de la logique floue ( classifications orientées objet ) sont mis en place afin d'obtenir le plan d'information des données spatiales

    Stream network analysis and geomorphic flood plain mapping from orbital and suborbital remote sensing imagery application to flood hazard studies in central Texas

    Get PDF
    The author has identified the following significant results. Development of a quantitative hydrogeomorphic approach to flood hazard evaluation was hindered by (1) problems of resolution and definition of the morphometric parameters which have hydrologic significance, and (2) mechanical difficulties in creating the necessary volume of data for meaningful analysis. Measures of network resolution such as drainage density and basin Shreve magnitude indicated that large scale topographic maps offered greater resolution than small scale suborbital imagery and orbital imagery. The disparity in network resolution capabilities between orbital and suborbital imagery formats depends on factors such as rock type, vegetation, and land use. The problem of morphometric data analysis was approached by developing a computer-assisted method for network analysis. The system allows rapid identification of network properties which can then be related to measures of flood response
    • …
    corecore