544 research outputs found

    Manufacturing Methods for Magnetic Resonance Microscopy Tools with Application to Neuroscience

    Get PDF
    Magnetresonanztomographie (MR) ist ein unverzichtbares nicht-invases und hochselektives bildgebendes Verfahren in der Medizin. MR Tomographie wird kommerziell in der klinischen Diagnostik und der Forschung für Gehirnkrankheit, z.B. Epilepsie, Alzheimer und Parkinson, angewandt. In den Neurowissenschaften haben sich Kleintiere als biologische Modelle für die grundlegenden Studien zur diesen Gehirnkrankheiten etabliert. MR Methoden sind ein wertvolles Werkzeug um die Morphologie und den Metabolismus von Kleintieren zu untersuchen. Die Modelle für die Untersuchung von Gehirnkrankheiten schließen Zellen/Zellkulturen und organotypische hippocampale Schnittkulturen (OHSC) mit ein. Obwohl die MR Mikroskopie für die Untersuchung von OHSC schon angewandt wurde fehlt eine effektive Plattform für umfangreiche longitudinale Studien an OHSC wie sie in den Neurowissenschaften üblich sind. Zwei Detektorkonzepte für die MR Mikroskopie inklusive ihrer Auslegung, der Herstellung und der Charakterisierung, werden in dieser Arbeit beschrieben. Beide Konzepte basieren auf Herstellungsmethoden welche hohe Fertigungsgenauigkeiten zulassen und in ihrem Herstellungsvolumen skalierbar sind. Hohle solenoide Mikrospulen welche für hochauflösende Untersuchung von Zell und Zellanhäufungen geeignet sind werden eingeführt. Die Herstellung basiert auf dem automatisierten wickeln von Mikrospulen, eine skalierbare und hochpräzise Fertigungsmethode der Mikrotechnologie. Zudem werde induktiv gekoppelte Ober ächenspulen eingeführt. Diese Oberflächenspulen fokussieren den magnetischen Fluss und werden deshalb Lenz Linsen genannt. Die Lenz Linsen werden mit kabelgebundenen und induktiv gekoppelten Spulen verglichen. Ihre Breitband-Fähigkeit machen sie zu einem idealen Kandidaten für die Nutzung in verschiedensten MR Tomographie Systemen. Die Lenz Linsen wurden für den Einsatz in einer MR kompatiblen Inkubationsplattform ausgelegt, welche in dieser Arbeit entwickelt wurde. Der MR Inkubator erweitert die Funktionalität eines MR Tomographen um neurologische Gewebe (z.B. OHSC) über mehrere Stunden andauernde MR Messungen am Leben zu erhalten. Der MR Inkubator erlaubt longitudinale Studien an OHSC und bietet damit eine Plattform für umfangreiche Studien in den Neurowissenschaften. Die Lenz Linsen wurden zusammen mit dem MR Inkubator für MR Mikroskopie Mes- sung von akuten/ xierten hippocampalen Schnitten und OHSC genutzt. Die Resultate dieser MR Mikoskopie Messungen zeigen dass in OHSC die grobe Zytoarchitektur sicht- bar ist, ohne dass die OHSC während der Messungen sterben. Somit ist das eingeführte System bereit für longitudinale Studien an OHSC, welche bereits für die Aufklärung der Epilepsieprogression begonnen wurden

    Development of a three-dimensional cell culture system based on microfluidics for nuclear magnetic resonance and optical monitoring.

    Get PDF
    A new microfluidic cell culture device compatible with real-time nuclear magnetic resonance (NMR) is presented here. The intended application is the long-term monitoring of 3D cell cultures by several techniques. The system has been designed to fit inside commercially available NMR equipment to obtain maximum readout resolution when working with small samples. Moreover, the microfluidic device integrates a fibre-optic-based sensor to monitor parameters such as oxygen, pH, or temperature during NMR monitoring, and it also allows the use of optical microscopy techniques such as confocal fluorescence microscopy. This manuscript reports the initial trials culturing neurospheres inside the microchamber of this device and the preliminary images and spatially localised spectra obtained by NMR. The images show the presence of a necrotic area in the interior of the neurospheres, as is frequently observed in histological preparations; this phenomenon appears whenever the distance between the cells and fresh nutrients impairs the diffusion of oxygen. Moreover, the spectra acquired in a volume of 8 nl inside the neurosphereshow an accumulation of lactate and lipids, which are indicative of anoxic condi-tions. Additionally, a basis for general temperature control and monitoring and a graphical control software have been developed and are also described. The complete platform will allow biomedical assays of therapeutic agents to be performed in the early phases of therapeutic development. Thus, small quantities of drugs or advanced nanodevices may be studied long-term under simulated living conditions that mimic the flow and distribution of nutrient

    NMR micro-detectors tailored for multinuclear and electrochemistry lab-on-a-chip applications

    Get PDF
    This work offers three solutions tailored to specific applications to overcome NMR challenges in the micro-domain. As the first sub-topic of this work, different potential electrode designs, compatible with NMR technique, are suggested and experimentally evaluated. As the second focus point, this work tackles multinuclear detection challenges. In parallel, a low-cost, broadband insert is discussed to enhance the sensitivity of standard NMR coils when a small sample volume is available

    Towards CMOS Nuclear Magnetic Resonance Spectroscopy: Design, Implementation and Experimental Results

    Get PDF
    Nuclear Magnetic Resonance (NMR) Spectroscopy is used intensively along with other ancillary spectroscopic and characterization techniques. The design and implementation of High Throughput NMR Spectroscopy is a key challenge to accelerate the drug discovery process. On the other hand, the current conventional NMR technologies are expensive and bulky. The development of novel handheld NMR spectroscopy is a key challenge towards NMR spectroscopy for Point-of-Care (PoC) diagnostics applications. This thesis addresses the above-mentioned challenges of High Throughput NMR Spectroscopy and Handheld NMR spectroscopy by developing new integrated circuits dedicated to NMR spectroscopy using Complementary Metal Oxide Semiconductor (CMOS) technology. Simulation and characterization results were also used to prove the functionality and applicability of the proposed techniques. We have designed two CMOS chips using 0.13-m technology, first chip includes number of new vertical microcoils and LNA with 780 pV/Hz at 300 MHz and the second one is a new dual-path NMR receiver

    Advanced interfaces for biomedical engineering applications in high- and low field NMR/MRI

    Get PDF
    Das zentrale Thema dieser Dissertation ist die Magnetresonanz(MR)-Sicherheit und MR-Kompatibilität von Bauelementen. Der Öffentlichkeit bekannt ist diese Thematik im Zusammenhang mit kommerziellen Implantaten. Die Gefahren, die sich aus den Wechselwirkungen zwischen dem MR-Tomografen (MRT) und dem Implantat ergeben, hindern viele Patienten daran, eine Untersuchung mittels MRT durchführen zu lassen. MR-Kompatibilität spielt jedoch nicht nur beim Design und der Kennzeichnung von Implantaten eine wichtige Rolle, sondern auch bei der Entwicklung von Bauelementen für die MR-Hardware. Beide Themen, Implantatinteraktionen und Hardware-Design, bilden fundamentale Aspekte dieser Arbeit. Der erste Teil befasst sich mit MRT-Wechselwirkungen von Implantaten. Die Ergebnisse einer umfangreichen Literaturrecherche zeigen, dass dringend belastbare Daten benötigt werden, um die durch MRT ausgelösten Schwingungen von Implantaten besser verstehen zu können. Dies gilt insbesondere für Vibrationen in viskoelastischen Umgebungen wie dem Gehirn. Im Rahmen dieser Arbeit wird ein neuartiges Messsystem vorgestellt, mit dem sich Schwingungen bei Standard-MRT-Aufnahmen und mit hoher Genauigkeit quantitativ messen lassen. Durch die Verwendung einer amplituden- und frequenzgesteuerten externen Stromversorgung werden die Übertragungsfunktionen implantatartiger Strukturen in viskoelastischen Umgebungen präzise bestimmt. Basierend auf den erfassten Daten wird eine Korrelation zwischen den resultierenden Schwingungsamplituden und den Zeitparametern der Aufnahmesequenz hergestellt und experimentell verifiziert. Eine wichtige Erkenntnis ist, dass die untersuchten Strukturen ein unterdämpftes Verhalten zeigen und damit resonant schwingen können. Darüber hinaus wird eine neue Kennzahl eingeführt, anhand derer die Wechselwirkung des Implantats auf Vibrationen klassifiziert werden können. Die Kennzahl gibt das normierte induzierte Drehmoment an, und ermöglicht eine einfache Berechnung des maximal zu erwartenden Drehmomoments auf jedem MRT-System. Somit können die zu erwartenden Maximalamplituden unkompliziert und für jedes System direkt ermittelt werden. Eine anderes Forschungsgebiet, die in-situ-Kernspinspektroskopie und -MRT von biologischen Untersuchungsobjekten im Hochfeld, erfordert eine neuartige MR-Messsonde sowie verbesserte MR-kompatible Substrate für die Zellkultivierung. Eine MR-Sonde mit flexibler Schnittstelle wurde entwickelt. Die endgültige Version ist mit zwei HF-Kanälen und einer Gradientenschnittstelle für flüssiggekühlte Gradienten ausgestattet. Ein Leistungsbewertung wurde mittels Standard-NMR/MRT-Experimenten durchgeführt, die eine Linienbreite von 0,5 Hz und ein mit kommerziellen Messsystem vergleichbares Signal-Rausch-Verhältnis ergaben. Der Vorteil liegt in dem integrierten Durchführungssystem innerhalb des mechanischen Rahmens. Dies bietet eine einfache Methode, zur spezifischen Erweiterung der Messsonde unter Verwendung zusätzlicher elektrischer, optischer und fluidischer Versorgungsleitungen. Auf dieser Basis können spezifische, komplexe experimentelle Hochfeld-NMR/MRT-Aufbauten in kurzer Zeit realisiert werden, ohne Bedarf nach maßgeschneiderten, teuren Sonden. Als Referenz werden zwei Messaufbauen präsentiert, bei ersterem wird die Sonde für ein Öl-Wasser-Fluidikexperiment und bei dem zweitem, in einem wasserstoffbasierten Hyperpolarisationsexperiment eingesetzt. Darüber hinaus wird ein neuartiges, MR-kompatibles 3D-Zellsubstrat basierend auf Kohlenstoff vorgestellt, das erfolgreich auf Zellwachstum und MR-Bildgebung getestet wurde. Die MRT dient des Weiteren als Analysewerkzeug, um die Erhaltung der Morphologie während der Pyrolyse zu untersuchen und zu bestätigen. Das Herstellungsprotokoll ist auf andere Vorläuferpolymere anwendbar, die den Weg zu einer Vielzahl von lithografisch strukturierten 3D-Gerüsten ebnen

    Broadband single-chip transceivers for compact NMR probes

    Get PDF
    Nuclear magnetic resonance (NMR) is one of the most relevant spectroscopic tools in use today. However, NMR requires relatively expensive and complicated experimental settings given by the combination of high homogeneous magnetic fields and a relatively complex radio-frequency (RF) electronics. This thesis concerns the development of RF electronics hardware, specifically introducing new complementary-metal-oxide-semiconductor (CMOS) transceiver designs. This work stems from a collaboration between EPFL and Metrolab SA, and aims at pushing in two directions: first, NMR-oriented CMOS transceivers will simplify the implementation of NMR probes for both experimental and commercial applications; second, novel CMOS ultra-compact probes will deliver experimental versatility and improved sensing power at the nL and sub-nL scale. We describe broadband 1 mm^2 transceivers operating in the range from 1 MHz to 1 GHz. The microchips include a RF power amplifier, a low-noise RF preamplifier, a frequency mixer, an audio-frequency (AF) amplifier, fully integrated transmit-receive switches, IQ signal generation, and broadband quadrature detection. In this work we show multi-nuclear NMR spectroscopy in combination with excitation/detection probe-heads based on micro-solenoids, therefore validating the broadband functioning. A combination of the transceivers and Metrolab's technology is also shown to deliver state-of-art performance in prototypes of commercial probes aimed for magnetometry. We shown that custom multichannel probes employing water samples of 500 nL are capable of measurement resolutions as high as 0.06 ppb/Hz^(1/2) at 7 T, and that magnetic noise due to field fluctuations can be directly measured at this resolution level and distinguished by the electronic noise. Overall, the results of this package indicate that NMR-oriented CMOS transceivers simplify the implementation of NMR probes for both experimental and commercial applications. When CMOS transceivers are combined to external resonators the resulting NMR probe may be called "compact" in the sense that the overall probe size is dominated by the excitation/detection resonator itself. Besides the implementation of compact probes, in this thesis we introduce the concept of ultra-compact NMR probes, where a single-chip transceiver is co-integrated with a multilayer microcoil realized with the metals of the CMOS technology. We demonstrate that with a non-resonant integrated coil of about 150 µm external diameter a 1H spin sensitivity of about 1.5·10^13 spins/Hz^(1/2) is achieved at 7 T. This value of sensitivity compares well with the most sensitive inductive probes previously reported at similar volume scales, with the resulting device showing an exceptional degree of versatility. We use, for the first time, a ultra-compact CMOS probe for the NMR spectroscopy of intact, static, sub-nL single ova of 0.1 and 0.5 nL, thereby reaching the relevant volume scale where life development begins for a broad variety of organisms, humans included. Thanks to the robustness and the versatility of the probe we could deliver a first extensive study of sub-nL single ova and indicate that ultra-compact probes are promising candidates to enable NMR-based study and selection of microscopic entities at biologically relevant volume scales. Overall, the results of this study indicate that CMOS ultra-compact probes will deliver experimental versatility and improved sensing power at the nL and sub-nL scale

    A comparison of Lenz lenses and LC resonators for NMR signal enhancement

    Get PDF
    High signal-to-noise ratio (SNR) of the NMR signal has always been a key target that drives massive research effort in many fields. Among several parameters, a high filling factor of the MR coil has proven to boost the SNR. In case of small-volume samples, a high filling factor and thus a high SNR can be achieved through miniaturizing the MR coil. However, under certain circumstances, this can be impractical. In this paper, we present an extensive theoretical and experimental investigation of the inductively coupled LC resonator and the magnetic Lenz lens as two candidate approaches that can enhance the SNR in such circumstances. The results demonstrate that the narrow-band LC resonator is superior in terms of SNR, while the non-tuned nature of the Lenz lens makes it preferable in broadband applications
    corecore