2,562 research outputs found

    Endpoint-transparent Multipath Transport with Software-defined Networks

    Full text link
    Multipath forwarding consists of using multiple paths simultaneously to transport data over the network. While most such techniques require endpoint modifications, we investigate how multipath forwarding can be done inside the network, transparently to endpoint hosts. With such a network-centric approach, packet reordering becomes a critical issue as it may cause critical performance degradation. We present a Software Defined Network architecture which automatically sets up multipath forwarding, including solutions for reordering and performance improvement, both at the sending side through multipath scheduling algorithms, and the receiver side, by resequencing out-of-order packets in a dedicated in-network buffer. We implemented a prototype with commonly available technology and evaluated it in both emulated and real networks. Our results show consistent throughput improvements, thanks to the use of aggregated path capacity. We give comparisons to Multipath TCP, where we show our approach can achieve a similar performance while offering the advantage of endpoint transparency

    Reducing Congestion Effects by Multipath Routing in Wireless Networks

    Get PDF
    We propose a solution to improve fairness and increasethroughput in wireless networks with location information.Our approach consists of a multipath routing protocol, BiasedGeographical Routing (BGR), and two congestion controlalgorithms, In-Network Packet Scatter (IPS) and End-to-EndPacket Scatter (EPS), which leverage BGR to avoid the congestedareas of the network. BGR achieves good performancewhile incurring a communication overhead of just 1 byte perdata packet, and has a computational complexity similar togreedy geographic routing. IPS alleviates transient congestion bysplitting traffic immediately before the congested areas. In contrast,EPS alleviates long term congestion by splitting the flow atthe source, and performing rate control. EPS selects the pathsdynamically, and uses a less aggressive congestion controlmechanism on non-greedy paths to improve energy efficiency.Simulation and experimental results show that our solutionachieves its objectives. Extensive ns-2 simulations show that oursolution improves both fairness and throughput as compared tosingle path greedy routing. Our solution reduces the variance ofthroughput across all flows by 35%, reduction which is mainlyachieved by increasing throughput of long-range flows witharound 70%. Furthermore, overall network throughput increasesby approximately 10%. Experimental results on a 50-node testbed are consistent with our simulation results, suggestingthat BGR is effective in practice

    CloudJet4BigData: Streamlining Big Data via an Accelerated Socket Interface

    Get PDF
    Big data needs to feed users with fresh processing results and cloud platforms can be used to speed up big data applications. This paper describes a new data communication protocol (CloudJet) for long distance and large volume big data accessing operations to alleviate the large latencies encountered in sharing big data resources in the clouds. It encapsulates a dynamic multi-stream/multi-path engine at the socket level, which conforms to Portable Operating System Interface (POSIX) and thereby can accelerate any POSIX-compatible applications across IP based networks. It was demonstrated that CloudJet accelerates typical big data applications such as very large database (VLDB), data mining, media streaming and office applications by up to tenfold in real-world tests
    • …
    corecore