138,232 research outputs found

    Matrix completion algorithms with applications in biomedicine, e-commerce and social science

    Get PDF
    This thesis investigates matrix completion algorithms with applications in biomedicine, e-commerce and social science. In general, matrix completion algorithms work well for low rank matrices. Such matrices find many applications in recommender systems and social network analysis. On the other hand, biological networks often yield high rank matrices. For example, the adjacency matrix representing interactions between transcription factors and target genes in the cell is a highly sparse matrix, in which most entries correspond to absent interactions and only a few entries correspond to present interactions. This sparse matrix is a high rank or even full rank matrix. Matrix completion algorithms do not work well for high rank matrices. In this thesis, several experiments are conducted to evaluate the performance of matrix completion algorithms for both low rank and high rank matrices. A new high rank matrix completion method is proposed, which is designed to process adjacency matrices representing interactions between transcription factors and target genes in cells

    Matrix Completion on Graphs

    Get PDF
    The problem of finding the missing values of a matrix given a few of its entries, called matrix completion, has gathered a lot of attention in the recent years. Although the problem under the standard low rank assumption is NP-hard, Cand\`es and Recht showed that it can be exactly relaxed if the number of observed entries is sufficiently large. In this work, we introduce a novel matrix completion model that makes use of proximity information about rows and columns by assuming they form communities. This assumption makes sense in several real-world problems like in recommender systems, where there are communities of people sharing preferences, while products form clusters that receive similar ratings. Our main goal is thus to find a low-rank solution that is structured by the proximities of rows and columns encoded by graphs. We borrow ideas from manifold learning to constrain our solution to be smooth on these graphs, in order to implicitly force row and column proximities. Our matrix recovery model is formulated as a convex non-smooth optimization problem, for which a well-posed iterative scheme is provided. We study and evaluate the proposed matrix completion on synthetic and real data, showing that the proposed structured low-rank recovery model outperforms the standard matrix completion model in many situations.Comment: Version of NIPS 2014 workshop "Out of the Box: Robustness in High Dimension

    On the Power of Adaptivity in Matrix Completion and Approximation

    Full text link
    We consider the related tasks of matrix completion and matrix approximation from missing data and propose adaptive sampling procedures for both problems. We show that adaptive sampling allows one to eliminate standard incoherence assumptions on the matrix row space that are necessary for passive sampling procedures. For exact recovery of a low-rank matrix, our algorithm judiciously selects a few columns to observe in full and, with few additional measurements, projects the remaining columns onto their span. This algorithm exactly recovers an n×nn \times n rank rr matrix using O(nrμ0log2(r))O(nr\mu_0 \log^2(r)) observations, where μ0\mu_0 is a coherence parameter on the column space of the matrix. In addition to completely eliminating any row space assumptions that have pervaded the literature, this algorithm enjoys a better sample complexity than any existing matrix completion algorithm. To certify that this improvement is due to adaptive sampling, we establish that row space coherence is necessary for passive sampling algorithms to achieve non-trivial sample complexity bounds. For constructing a low-rank approximation to a high-rank input matrix, we propose a simple algorithm that thresholds the singular values of a zero-filled version of the input matrix. The algorithm computes an approximation that is nearly as good as the best rank-rr approximation using O(nrμlog2(n))O(nr\mu \log^2(n)) samples, where μ\mu is a slightly different coherence parameter on the matrix columns. Again we eliminate assumptions on the row space

    A Characterization of Deterministic Sampling Patterns for Low-Rank Matrix Completion

    Full text link
    Low-rank matrix completion (LRMC) problems arise in a wide variety of applications. Previous theory mainly provides conditions for completion under missing-at-random samplings. This paper studies deterministic conditions for completion. An incomplete d×Nd \times N matrix is finitely rank-rr completable if there are at most finitely many rank-rr matrices that agree with all its observed entries. Finite completability is the tipping point in LRMC, as a few additional samples of a finitely completable matrix guarantee its unique completability. The main contribution of this paper is a deterministic sampling condition for finite completability. We use this to also derive deterministic sampling conditions for unique completability that can be efficiently verified. We also show that under uniform random sampling schemes, these conditions are satisfied with high probability if O(max{r,logd})O(\max\{r,\log d\}) entries per column are observed. These findings have several implications on LRMC regarding lower bounds, sample and computational complexity, the role of coherence, adaptive settings and the validation of any completion algorithm. We complement our theoretical results with experiments that support our findings and motivate future analysis of uncharted sampling regimes.Comment: This update corrects an error in version 2 of this paper, where we erroneously assumed that columns with more than r+1 observed entries would yield multiple independent constraint
    corecore