1,321 research outputs found

    Semantic Instance Annotation of Street Scenes by 3D to 2D Label Transfer

    Full text link
    Semantic annotations are vital for training models for object recognition, semantic segmentation or scene understanding. Unfortunately, pixelwise annotation of images at very large scale is labor-intensive and only little labeled data is available, particularly at instance level and for street scenes. In this paper, we propose to tackle this problem by lifting the semantic instance labeling task from 2D into 3D. Given reconstructions from stereo or laser data, we annotate static 3D scene elements with rough bounding primitives and develop a model which transfers this information into the image domain. We leverage our method to obtain 2D labels for a novel suburban video dataset which we have collected, resulting in 400k semantic and instance image annotations. A comparison of our method to state-of-the-art label transfer baselines reveals that 3D information enables more efficient annotation while at the same time resulting in improved accuracy and time-coherent labels.Comment: 10 pages in Conference on Computer Vision and Pattern Recognition (CVPR), 201

    Particle-based Sampling and Meshing of Surfaces in Multimaterial Volumes

    Full text link

    Semantic 3D Reconstruction with Finite Element Bases

    Full text link
    We propose a novel framework for the discretisation of multi-label problems on arbitrary, continuous domains. Our work bridges the gap between general FEM discretisations, and labeling problems that arise in a variety of computer vision tasks, including for instance those derived from the generalised Potts model. Starting from the popular formulation of labeling as a convex relaxation by functional lifting, we show that FEM discretisation is valid for the most general case, where the regulariser is anisotropic and non-metric. While our findings are generic and applicable to different vision problems, we demonstrate their practical implementation in the context of semantic 3D reconstruction, where such regularisers have proved particularly beneficial. The proposed FEM approach leads to a smaller memory footprint as well as faster computation, and it constitutes a very simple way to enable variable, adaptive resolution within the same model

    Doctor of Philosophy

    Get PDF
    dissertationOne of the fundamental building blocks of many computational sciences is the construction and use of a discretized, geometric representation of a problem domain, often referred to as a mesh. Such a discretization enables an otherwise complex domain to be represented simply, and computation to be performed over that domain with a finite number of basis elements. As mesh generation techniques have become more sophisticated over the years, focus has largely shifted to quality mesh generation techniques that guarantee or empirically generate numerically well-behaved elements. In this dissertation, the two complementary meshing subproblems of vertex placement and element creation are analyzed, both separately and together. First, a dynamic particle system achieves adaptivity over domains by inferring feature size through a new information passing algorithm. Second, a new tetrahedral algorithm is constructed that carefully combines lattice-based stenciling and mesh warping to produce guaranteed quality meshes on multimaterial volumetric domains. Finally, the ideas of lattice cleaving and dynamic particle systems are merged into a unified framework for producing guaranteed quality, unstructured and adaptive meshing of multimaterial volumetric domains

    Multi-Material Mesh Representation of Anatomical Structures for Deep Brain Stimulation Planning

    Get PDF
    The Dual Contouring algorithm (DC) is a grid-based process used to generate surface meshes from volumetric data. However, DC is unable to guarantee 2-manifold and watertight meshes due to the fact that it produces only one vertex for each grid cube. We present a modified Dual Contouring algorithm that is capable of overcoming this limitation. The proposed method decomposes an ambiguous grid cube into a set of tetrahedral cells and uses novel polygon generation rules that produce 2-manifold and watertight surface meshes with good-quality triangles. These meshes, being watertight and 2-manifold, are geometrically correct, and therefore can be used to initialize tetrahedral meshes. The 2-manifold DC method has been extended into the multi-material domain. Due to its multi-material nature, multi-material surface meshes will contain non-manifold elements along material interfaces or shared boundaries. The proposed multi-material DC algorithm can (1) generate multi-material surface meshes where each material sub-mesh is a 2-manifold and watertight mesh, (2) preserve the non-manifold elements along the material interfaces, and (3) ensure that the material interface or shared boundary between materials is consistent. The proposed method is used to generate multi-material surface meshes of deep brain anatomical structures from a digital atlas of the basal ganglia and thalamus. Although deep brain anatomical structures can be labeled as functionally separate, they are in fact continuous tracts of soft tissue in close proximity to each other. The multi-material meshes generated by the proposed DC algorithm can accurately represent the closely-packed deep brain structures as a single mesh consisting of multiple material sub-meshes. Each sub-mesh represents a distinct functional structure of the brain. Printed and/or digital atlases are important tools for medical research and surgical intervention. While these atlases can provide guidance in identifying anatomical structures, they do not take into account the wide variations in the shape and size of anatomical structures that occur from patient to patient. Accurate, patient-specific representations are especially important for surgical interventions like deep brain stimulation, where even small inaccuracies can result in dangerous complications. The last part of this research effort extends the discrete deformable 2-simplex mesh into the multi-material domain where geometry-based internal forces and image-based external forces are used in the deformation process. This multi-material deformable framework is used to segment anatomical structures of the deep brain region from Magnetic Resonance (MR) data

    Building with Drones: Accurate 3D Facade Reconstruction using MAVs

    Full text link
    Automatic reconstruction of 3D models from images using multi-view Structure-from-Motion methods has been one of the most fruitful outcomes of computer vision. These advances combined with the growing popularity of Micro Aerial Vehicles as an autonomous imaging platform, have made 3D vision tools ubiquitous for large number of Architecture, Engineering and Construction applications among audiences, mostly unskilled in computer vision. However, to obtain high-resolution and accurate reconstructions from a large-scale object using SfM, there are many critical constraints on the quality of image data, which often become sources of inaccuracy as the current 3D reconstruction pipelines do not facilitate the users to determine the fidelity of input data during the image acquisition. In this paper, we present and advocate a closed-loop interactive approach that performs incremental reconstruction in real-time and gives users an online feedback about the quality parameters like Ground Sampling Distance (GSD), image redundancy, etc on a surface mesh. We also propose a novel multi-scale camera network design to prevent scene drift caused by incremental map building, and release the first multi-scale image sequence dataset as a benchmark. Further, we evaluate our system on real outdoor scenes, and show that our interactive pipeline combined with a multi-scale camera network approach provides compelling accuracy in multi-view reconstruction tasks when compared against the state-of-the-art methods.Comment: 8 Pages, 2015 IEEE International Conference on Robotics and Automation (ICRA '15), Seattle, WA, US

    Tetrahedral Image-to-Mesh Conversion Software for Anatomic Modeling of Arteriovenous Malformations

    Get PDF
    We describe a new implementation of an adaptive multi-tissue tetrahedral mesh generator targeting anatomic modeling of Arteriovenous Malformation (AVM) for surgical simulations. Our method, initially constructs an adaptive Body-Centered Cubic (BCC) mesh of high quality elements. Then, it deforms the mesh surfaces to their corresponding physical image boundaries, hence, improving the mesh fidelity and smoothness. Our deformation scheme, which builds upon the ITK toolkit, is based on the concept of energy minimization, and relies on a multi-material point-based registration. It uses non-connectivity patterns to implicitly control the number of the extracted feature points needed for the registration, and thus, adjusts the trade-off between the achieved mesh fidelity and the deformation speed. While many medical imaging applications require robust mesh generation, there are few codes available to the public. We compare our implementation with two similar open-source image-to-mesh conversion codes: (1) Cleaver from US, and (2) CGAL from EU. Our evaluation is based on five isotropic/anisotropic segmented images, and relies on metrics like geometric & topologic fidelity, mesh quality, gradation and smoothness. The implementation we describe is open- source and it will be available within: (i) the 3D Slicer package for visualization and image analysis from Harvard Medical School, and (ii) an interactive simulator for neurosurgical procedures involving vasculature using SOFA, a framework for real-time medical simulation developed by INRIA
    • …
    corecore