394 research outputs found

    Design of two-stage class AB CMOS buffers: a systematic approach

    Get PDF
    A systematic approach for the design of two-stage class AB CMOS unity-gain buffers is proposed. It is based on the inclusion of a class AB operation to class A Miller amplifier topologies in unity-gain negative feedback by a simple technique that does not modify quiescent currents, supply requirements, noise performance, or static power. Three design examples are fabricated in a 0.5 μm CMOS process. Measurement results show slew rate improvement factors of approximately 100 for the class AB buffers versus their class A counterparts for the same quiescent power consumption (< 200 μW)

    700mV low power low noise implantable neural recording system design

    Get PDF
    This dissertation presents the work for design and implementation of a low power, low noise neural recording system consisting of Bandpass Amplifier and Pipelined Analog to Digital Converter (ADC) for recording neural signal activities. A low power, low noise two stage neural amplifier for use in an intelligent Radio-Frequency Identification (RFID) based on folded cascode Operational Transconductance Amplifier (OTA) is utilized to amplify the neural signals. The optimization of the number of amplifier stages is discussed to achieve the minimum power and area consumption. The amplifier power supply is 0.7V. The midband gain of amplifier is 58.4dB with a 3dB bandwidth from 0.71 to 8.26 kHz. Measured input-referred noise and total power consumption are 20.7 μVrms and 1.90 μW respectively. The measured result shows that the optimizing the number of stages can achieve lower power consumption and demonstrates the neural amplifier's suitability for instu neutral activity recording. The advantage of power consumption of Pipelined ADC over Successive Approximation Register (SAR) ADC and Delta-Sigma ADC is discussed. An 8 bit fully differential (FD) Pipeline ADC for use in a smart RFID is presented in this dissertation. The Multiplying Digital to Analog Converter (MDAC) utilizes a novel offset cancellation technique robust to device leakage to reduce the input drift voltage. Simulation results of static and dynamic performance show this low power Pipeline ADC is suitable for multi-channel neural recording applications. The performance of all proposed building blocks is verified through test chips fabricated in IBM 180nm CMOS process. Both bench-top and real animal test results demonstrate the system's capability of recording neural signals for neural spike detection

    Performance enhancement in the desing of amplifier and amplifier-less circuits in modern CMOS technologies.

    Get PDF
    In the context of nowadays CMOS technology downscaling and the increasing demand of high performance electronics by industry and consumers, analog design has become a major challenge. On the one hand, beyond others, amplifiers have traditionally been a key cell for many analog systems whose overall performance strongly depends on those of the amplifier. Consequently, still today, achieving high performance amplifiers is essential. On the other hand, due to the increasing difficulty in achieving high performance amplifiers in downscaled modern technologies, a different research line that replaces the amplifier by other more easily achievable cells appears: the so called amplifier-less techniques. This thesis explores and contributes to both philosophies. Specifically, a lowvoltage differential input pair is proposed, with which three multistage amplifiers in the state of art are designed, analysed and tested. Moreover, a structure for the implementation of differential switched capacitor circuits, specially suitable for comparator-based circuits, that features lower distortion and less noise than the classical differential structures is proposed, an, as a proof of concept, implemented in a ΔΣ modulator

    Dopamiinin hapettumisen lukija-anturirajapinta 65 nm CMOS teknologialla

    Get PDF
    Sensing and monitoring of neural activities within the central nervous system has become a fast-growing area of research due to the need to understand more about how neurons communicate. Several neurological disorders such as Parkinson’s disease, Schizophrenia, Alzeihmers and Epilepsy have been reported to be associated with imbalance in the concentration of neurotransmitters such as glutamate and dopamine [1] - [5]. Hence, this thesis proposes a solution for the measurement of dopamine concentration in the brain during neural communication. The proposed design of the dopamine oxidation readout sensor interface is based on a mixed-signal front-end architecture for minimizing noise and high resolution of detected current signals. The analog front-end is designed for acquisition and amplification of current signals resulting from oxidation and reduction at the biosensor electrodes in the brain. The digital signal processing (DSP) block is used for discretization of detected dopamine oxidation and reduction current signals that can be further processed by an external system. The results from the simulation of the proposed design show that the readout circuit has a current resolution of 100 pA and can detect minimum dopamine concentration of 10 μMol based on measured data from novel diamond-like carbon electrodes [6]. Higher dopamine concentration can be detected from the sensor interface due to its support for a wide current range of 1.2 μA(±600 nA). The digital code representation of the detected dopamine has a resolution of 14.3-bits with RMS conversion error of 0.18 LSB which results in an SNR of 88 dB at full current range input. However, the attained ENOB is 8-bits due to the effect of nonlinearity in the oscillator based ADC. Nonetheless, the achieved resolution of the readout circuit provides good sensitivity of released dopamine in the brain which is useful for further understanding of neurotransmitters and fostering research into improved treatments of related neurodegenerative diseases.Keskushermoston aktiivisuuden havainnointi ja tarkkailu on muodostunut tärkeäksi tutkimusalaksi, sillä tarve ymmärtää neuronien viestintää on kasvanut. Monien hermostollisten sairauksien kuten Parkinsonin taudin, skitsofrenian, Alzheimerin taudin ja epilepsian on huomattu aiheuttavan muutoksia välittäjäaineiden, kuten glutamaatin ja dopamiinin, pitoisuuksissa [1] - [5]. Aiheeseen liittyen tässä työssä esitetään ratkaisu dopamiinipitoisuuden mittaamiseksi aivoista. Esitetty dopamiinipitoisuuden lukijapiiri perustuu sekamuotoiseen etupäärakenteeseen, jolla saavutetaan matala kohinataso ja hyvä tarkkuus signaalien ilmaisemisessa. Suunniteltu analoginen etupää kykenee lukemaan ja vahvistamaan dopamiinipitoisuuden muutosten aiheuttamia virran muutoksia aivoihin asennetuista elektrodeista. Digitaalisen signaalinkäsittelyn avulla voidaan havaita dopamiinin hapettumis-ja pelkistymisvirtasignaalit, ja välittää ne edelleen ulkoisen järjestelmän muokattavaksi. Simulaatiotulokset osoittavat, että suunniteltu piiri saavuttaa 100 pA virran erottelukyvyn. Simuloinnin perustuessa hiilipohjaisiin dopamiinielektrodeihin piiri voi havaita 10 μMol dopamiinipitoisuuden [6]. Myös suurempia dopamiinipitoisuuksia voidaan havaita, sillä etupäärajapinta tukee 1.2 μA(±600 nA) virta-aluetta. Digitaalinen esitysmuoto tukee 14.3 bitin esitystarkkuutta 0.18 bitin RMS virheellä saavuttaen 88 dB dynaamisen virta-alueen. Saavutettu ENOB (tehollinen bittimäärä) on kuitenkin 8 bittiä oskillaattoripohjaisen ADC:n (analogia-digitaalimuuntimen) epälineaarisuuden takia. Saavutettu tarkkuus tuottaa hyvän herkkyyden dopamiinin havaitsemiseksi ja hyödyttää siten välittäjäainetutkimusta ja uusien hoitomuotojen kehittämistä hermostollisiin sairauksiin

    Digital-Based Analog Processing in Nanoscale CMOS ICs for IoT Applications

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    Design Techniques for High Speed Low Voltage and Low Power Non-Calibrated Pipeline Analog to Digital Converters

    Get PDF
    The profound digitization of modern microelectronic modules made Analog-to- Digital converters (ADC) key components in many systems. With resolutions up to 14bits and sampling rates in the 100s of MHz, the pipeline ADC is a prime candidate for a wide range of applications such as instrumentation, communications and consumer electronics. However, while past work focused on enhancing the performance of the pipeline ADC from an architectural standpoint, little has been done to individually address its fundamental building blocks. This work aims to achieve the latter by proposing design techniques to improve the performance of these blocks with minimal power consumption in low voltage environments, such that collectively high performance is achieved in the pipeline ADC. Towards this goal, a Recycling Folded Cascode (RFC) amplifier is proposed as an enhancement to the general performance of the conventional folded cascode. Tested in Taiwan Semiconductor Manufacturing Company (TSMC) 0.18?m Complementary Metal Oxide Semiconductor (CMOS) technology, the RFC provides twice the bandwidth, 8-10dB additional gain, more than twice the slew rate and improved noise performance over the conventional folded cascode-all at no additional power or silicon area. The direct auto-zeroing offset cancellation scheme is optimized for low voltage environments using a dual level common mode feedback (CMFB) circuit, and amplifier differential offsets up to 50mV are effectively cancelled. Together with the RFC, the dual level CMFB was used to implement a sample and hold amplifier driving a singleended load of 1.4pF and using only 2.6mA; at 200MS/s better than 9bit linearity is achieved. Finally a power conscious technique is proposed to reduce the kickback noise of dynamic comparators without resorting to the use of pre-amplifiers. When all techniques are collectively used to implement a 1Vpp 10bit 160MS/s pipeline ADC in Semiconductor Manufacturing International Corporation (SMIC) 0.18[mu]m CMOS, 9.2 effective number of bits (ENOB) is achieved with a near Nyquist-rate full scale signal. The ADC uses an area of 1.1mm2 and consumes 42mW in its analog core. Compared to recent state-of-the-art implementations in the 100-200MS/s range, the presented pipeline ADC uses the least power per conversion rated at 0.45pJ/conversion-step

    High-accuracy switched-capacitor techniques applied to filter and ADC design

    Get PDF
    corecore