117 research outputs found

    Efficient hardware implementations of bio-inspired networks

    Get PDF
    The human brain, with its massive computational capability and power efficiency in small form factor, continues to inspire the ultimate goal of building machines that can perform tasks without being explicitly programmed. In an effort to mimic the natural information processing paradigms observed in the brain, several neural network generations have been proposed over the years. Among the neural networks inspired by biology, second-generation Artificial or Deep Neural Networks (ANNs/DNNs) use memoryless neuron models and have shown unprecedented success surpassing humans in a wide variety of tasks. Unlike ANNs, third-generation Spiking Neural Networks (SNNs) closely mimic biological neurons by operating on discrete and sparse events in time called spikes, which are obtained by the time integration of previous inputs. Implementation of data-intensive neural network models on computers based on the von Neumann architecture is mainly limited by the continuous data transfer between the physically separated memory and processing units. Hence, non-von Neumann architectural solutions are essential for processing these memory-intensive bio-inspired neural networks in an energy-efficient manner. Among the non-von Neumann architectures, implementations employing non-volatile memory (NVM) devices are most promising due to their compact size and low operating power. However, it is non-trivial to integrate these nanoscale devices on conventional computational substrates due to their non-idealities, such as limited dynamic range, finite bit resolution, programming variability, etc. This dissertation demonstrates the architectural and algorithmic optimizations of implementing bio-inspired neural networks using emerging nanoscale devices. The first half of the dissertation focuses on the hardware acceleration of DNN implementations. A 4-layer stochastic DNN in a crossbar architecture with memristive devices at the cross point is analyzed for accelerating DNN training. This network is then used as a baseline to explore the impact of experimental memristive device behavior on network performance. Programming variability is found to have a critical role in determining network performance compared to other non-ideal characteristics of the devices. In addition, noise-resilient inference engines are demonstrated using stochastic memristive DNNs with 100 bits for stochastic encoding during inference and 10 bits for the expensive training. The second half of the dissertation focuses on a novel probabilistic framework for SNNs using the Generalized Linear Model (GLM) neurons for capturing neuronal behavior. This work demonstrates that probabilistic SNNs have comparable perform-ance against equivalent ANNs on two popular benchmarks - handwritten-digit classification and human activity recognition. Considering the potential of SNNs in energy-efficient implementations, a hardware accelerator for inference is proposed, termed as Spintronic Accelerator for Probabilistic SNNs (SpinAPS). The learning algorithm is optimized for a hardware friendly implementation and uses first-to-spike decoding scheme for low latency inference. With binary spintronic synapses and digital CMOS logic neurons for computations, SpinAPS achieves a performance improvement of 4x in terms of GSOPS/W/mm2^2 when compared to a conventional SRAM-based design. Collectively, this work demonstrates the potential of emerging memory technologies in building energy-efficient hardware architectures for deep and spiking neural networks. The design strategies adopted in this work can be extended to other spike and non-spike based systems for building embedded solutions having power/energy constraints

    Mixed-precision deep learning based on computational memory

    Full text link
    Deep neural networks (DNNs) have revolutionized the field of artificial intelligence and have achieved unprecedented success in cognitive tasks such as image and speech recognition. Training of large DNNs, however, is computationally intensive and this has motivated the search for novel computing architectures targeting this application. A computational memory unit with nanoscale resistive memory devices organized in crossbar arrays could store the synaptic weights in their conductance states and perform the expensive weighted summations in place in a non-von Neumann manner. However, updating the conductance states in a reliable manner during the weight update process is a fundamental challenge that limits the training accuracy of such an implementation. Here, we propose a mixed-precision architecture that combines a computational memory unit performing the weighted summations and imprecise conductance updates with a digital processing unit that accumulates the weight updates in high precision. A combined hardware/software training experiment of a multilayer perceptron based on the proposed architecture using a phase-change memory (PCM) array achieves 97.73% test accuracy on the task of classifying handwritten digits (based on the MNIST dataset), within 0.6% of the software baseline. The architecture is further evaluated using accurate behavioral models of PCM on a wide class of networks, namely convolutional neural networks, long-short-term-memory networks, and generative-adversarial networks. Accuracies comparable to those of floating-point implementations are achieved without being constrained by the non-idealities associated with the PCM devices. A system-level study demonstrates 173x improvement in energy efficiency of the architecture when used for training a multilayer perceptron compared with a dedicated fully digital 32-bit implementation

    Capacity, Fidelity, and Noise Tolerance of Associative Spatial-Temporal Memories Based on Memristive Neuromorphic Network

    Full text link
    We have calculated the key characteristics of associative (content-addressable) spatial-temporal memories based on neuromorphic networks with restricted connectivity - "CrossNets". Such networks may be naturally implemented in nanoelectronic hardware using hybrid CMOS/memristor circuits, which may feature extremely high energy efficiency, approaching that of biological cortical circuits, at much higher operation speed. Our numerical simulations, in some cases confirmed by analytical calculations, have shown that the characteristics depend substantially on the method of information recording into the memory. Of the four methods we have explored, two look especially promising - one based on the quadratic programming, and the other one being a specific discrete version of the gradient descent. The latter method provides a slightly lower memory capacity (at the same fidelity) then the former one, but it allows local recording, which may be more readily implemented in nanoelectronic hardware. Most importantly, at the synchronous retrieval, both methods provide a capacity higher than that of the well-known Ternary Content-Addressable Memories with the same number of nonvolatile memory cells (e.g., memristors), though the input noise immunity of the CrossNet memories is somewhat lower

    Analog Vector-Matrix Multiplier Based on Programmable Current Mirrors for Neural Network Integrated Circuits

    Get PDF
    We propose a CMOS Analog Vector-Matrix Multiplier for Deep Neural Networks, implemented in a standard single-poly 180 nm CMOS technology. The learning weights are stored in analog floating-gate memory cells embedded in current mirrors implementing the multiplication operations. We experimentally verify the analog storage capability of designed single-poly floating-gate cells, the accuracy of the multiplying function of proposed tunable current mirrors, and the effective number of bits of the analog operation. We perform system-level simulations to show that an analog deep neural network based on the proposed vector-matrix multiplier can achieve an inference accuracy comparable to digital solutions with an energy efficiency of 26.4 TOPs/J, a layer latency close to 100 mu s and an intrinsically high degree of parallelism. Our proposed design has also a cost advantage, considering that it can be implemented in a standard single-poly CMOS process flow
    • …
    corecore