23,916 research outputs found

    Solar photochemical process engineering for production of fuels and chemicals

    Get PDF
    The engineering costs and performance of a nominal 25,000 scmd (883,000 scfd) photochemical plant to produce dihydrogen from water were studied. Two systems were considered, one based on flat-plate collector/reactors and the other on linear parabolic troughs. Engineering subsystems were specified including the collector/reactor, support hardware, field transport piping, gas compression equipment, and balance-of-plant (BOP) items. Overall plant efficiencies of 10.3 and 11.6% are estimated for the flat-plate and trough systems, respectively, based on assumed solar photochemical efficiencies of 12.9 and 14.6%. Because of the opposing effects of concentration ratio and operating temperature on efficiency, it was concluded that reactor cooling would be necessary with the trough system. Both active and passive cooling methods were considered. Capital costs and energy costs, for both concentrating and non-concentrating systems, were determined and their sensitivity to efficiency and economic parameters were analyzed. The overall plant efficiency is the single most important factor in determining the cost of the fuel

    Review of solar fuel-producing quantum conversion processes

    Get PDF
    The status and potential of fuel-producing solar photochemical processes are discussed. Research focused on splitting water to produce dihydrogen and is at a relatively early stage of development. Current emphasis is primarily directed toward understanding the basic chemistry underlying such quantum conversion processes. Theoretical analyses by various investigators predict a limiting thermodynamic efficiency of 31% for devices with a single photosystem operating with unfocused sunlight at 300 K. When non-idealities are included, it appears unlikely that actual devices will have efficiencies greater than 12 to 15%. Observed efficiencies are well below theoretical limits. Cyclic homogeneous photochemical processes for splitting water have efficiencies considerably less than 1%. Efficiency can be significantly increased by addition of a sacrificial reagent; however, such systems are no longer cyclic and it is doubtful that they would be economical on a commercial scale. The observed efficiencies for photoelectrochemical processes are also low but such systems appear more promising than homogeneous photochemical systems. Operating and systems options, including operation at elevated temperature and hybrid and coupled quantum-thermal conversion processes, are also considered

    Models and measurements of energy-dependent quenching.

    Get PDF
    Energy-dependent quenching (qE) in photosystem II (PSII) is a pH-dependent response that enables plants to regulate light harvesting in response to rapid fluctuations in light intensity. In this review, we aim to provide a physical picture for understanding the interplay between the triggering of qE by a pH gradient across the thylakoid membrane and subsequent changes in PSII. We discuss how these changes alter the energy transfer network of chlorophyll in the grana membrane and allow it to switch between an unquenched and quenched state. Within this conceptual framework, we describe the biochemical and spectroscopic measurements and models that have been used to understand the mechanism of qE in plants with a focus on measurements of samples that perform qE in response to light. In addition, we address the outstanding questions and challenges in the field. One of the current challenges in gaining a full understanding of qE is the difficulty in simultaneously measuring both the photophysical mechanism of quenching and the physiological state of the thylakoid membrane. We suggest that new experimental and modeling efforts that can monitor the many processes that occur on multiple timescales and length scales will be important for elucidating the quantitative details of the mechanism of qE

    Investigation of the potentialities of photochemical laser systems. Part I - Survey and analysis Final report, 1 Feb. 1966 - 31 Jan. 1967

    Get PDF
    Photodissociative laser systems used to convert solar radiation to monochromatic coherent emission - excitation mechanisms, spectroscopy of gases absorbing light, and chemical processe

    Influence of temperature, UV-light wavelength and intensity on polypropylene photothermal oxidation

    Get PDF
    A criterion based on the energy absorbed by photosensitive species was proposed to describe the contribution of UV-light to the initiation of the polypropylene photothermal oxidation whatever the light source. The calculation of this energy was performed using the widely accepted quantum theory. The criterion was then introduced in two different types of analytical models commonly used to describe the combined effects of UV light and temperature on induction time, namely: the reciprocity law and kinetic model. The limitations of both types of analytical models were then investigated: the latter, derived from a realistic mechanistic scheme, was found to be much more relevant than the former, which is presumably valid in a restricted range of light intensities, essentially due to its empirical origin

    Laboratory observations of the photochemistry of parent molecules: A review

    Get PDF
    The photochemistry of possible parent molecules of comets has been reviewed. Quantum yields for many of the primary processes are unknown. Energy partitioning among the fragments has not been extensively investigated. A few of the studies have been performed as a function of the number of collisions that the excited molecules undergo, so that possible differences that may occur in a cometary environment may be ascertained

    Photochemical synthesis of a “cage” compound in a microreactor: Rigorous comparison with a batch photoreactor

    Get PDF
    An intramolecular [2 + 2] photocycloaddition is performed in a microphotoreactor (0.81 mL) built by winding FEP tubing around a commercially available Pyrex immersion well in which a medium pressure mercury lamp is inserted. A rigorous comparison with a batch photoreactor (225 mL) is proposed by means of a simple model coupling the reaction kinetics with the mass, momentum and radiative transfer equations. This serves as a basis to explain why the chemical conversion and the irradiation time are respectively increased and reduced in the microphotoreactor relative to those in the batch photoreactor. Through this simple model reaction, some criteria for transposing photochemical synthesis from a batch photoreactor to a continuous microphotoreactor are defined

    Oxygen photolysis in the Mauritanian upwelling: Implications for net community production

    Get PDF
    We carried out 16 photochemical experiments of filtered surface water in a custom-built solar simulator and concomitant measurements of in vitro gross primary production (GPP) and respiration (R) in the Mauritanian upwelling during a Lagrangian study following three sulfur hexafluoride–labeled patches of upwelled water (P1 to P3). Oxygen photolysis rates were correlated with the absorbance of chromophoric dissolved organic matter (CDOM) at 300 nm, suggesting first-order kinetics with respect to CDOM. An exponential fit was used to calculate the apparent quantum yield (AQY) for oxygen photolysis, giving an average AQY of 0.00053 mmol O2 (mole photons m22 s21)21 at 280 nm and slope of 0.0012 nm21. Modeled photochemical oxygen demand (POD) at the surface (3–16 mmol m23 d21) occasionally exceeded R and was dominated by ultraviolet radiation (71– 79%). Euphotic-layer integrated GPP decreased with time during both P-1 and P-3, whereas R remained relatively constant and POD increased during P-1 and decreased during P-3. On Day 4 of P-3, GPP and POD maxima coincided with high CDOM absorbance, suggesting ‘‘new’’ CDOM production. Omitting POD may lead to an underestimation of net community production (NCP), both through in vitro and geochemical methods (here by 2–22%). We propose that oxygen-based NCP estimates should be revised upward. For the Mauritanian upwelling, the POD-corrected NCP was strongly correlated with standard NCP with a slope of 1.0066 6 0.0244 and intercept of 46.51 6 13.15 mmol m22 d21
    corecore