9,469 research outputs found

    Independence Analysis of Firing and Rule-based Net Transformations in Reconfigurable Object Nets

    Get PDF
    The main idea behind Reconfigurable Object Nets (RONs) is to support the visual specification of controlled rule-based net transformations of place/transition nets (P/T nets). RONs are high-level nets with two types of tokens: object nets (place/transition nets) and net transformation rules (a dedicated type of graph transformation rules). Firing of high-level transitions may involve firing of object net transitions, transporting object net tokens through the high-level net, and applying net transformation rules to object nets, e.g. to model net reconfigurations. A visual editor and simulator for RONs has been developed as a plug-in for ECLIPSE using the ECLIPSE Modeling Framework (EMF) and Graphical Editor Framework (GEF) plug-ins. The problem in this context is to analyze under which conditions net transformations and token firing can be executed in arbitrary order. This problem has been solved formally in a previous paper. In this contribution we present an extension of our RON tool which implements the analysis of conflicts between parallel enabled transitions, between parallel applicable net transformation rules (Church-Rosser property), and between transition firing and net transformation steps. The conflict analysis is applied to a RON simulating a distributed producer-consumer system

    RONs Revisited: General Approach to Model Reconfigurable Object Nets based on Algebraic High-Level Nets

    Get PDF
    Reconfigurable Object Nets (RONs) have been implemented in our group to support the visual specification of controlled rule-based transformations of marked place/transition (P/T) nets. RONs are high-level nets (system nets) with two types of tokens: object nets (P/T nets) and net transformation rules. System net transitions can be of different types to fire object net transitions, move object nets through the system net, or to apply a net transformation rule to an object net. The disadvantage of the RON approach and tool is the limitation of object nets to P/T nets and the limitation of the underlying semantics of RONs due to the fixed types for system net transitions. Often, a more general approach is preferred where the type of object nets and the behavior of reconfigurations may be defined in a more flexible way. In this paper, we propose to use Algebraic High-Level nets with individual tokens (AHLI nets) as system nets. In this more general approach, tokens may be any type of Petri nets, defined by the corresponding algebraic signature and algebra. To support this general approach, a development environment for AHLI nets is currently implemented which allows the user to edit and simulate AHLI nets. We present the formalization of RONs as special AHLI nets and describe the current state of the AHLI net tool environment

    Functorial Analysis of Algebraic Higher-Order Net Systems with Applications to Mobile Ad-Hoc Networks

    Get PDF
    Algebraic higher-order (AHO) net systems are Petri nets with place/ transition systems, i.e. place/transition nets with initial markings, and rules as tokens. In several applications, however, there is the need for explicit data modeling. The main idea of this paper is to introduce AHO net systems with high-level net systems and corresponding rules as tokens. We relate them to AHO net systems with low-level net systems as tokens and analyze the firing and transformation properties of the corresponding net class transformation defined as functors between the corresponding categories of AHO net systems. All concepts and results are explained with an example in the application area of mobile ad-hoc networks. From an abstract point of view, mobile ad-hoc networks consist of mobile nodes which communicate with each other independent of a stable infrastructure, while the topology of the network constantly changes depending on the current position of the nodes and their availability. To ensure satisfactory team cooperation in workflows of mobile ad-hoc networks we use the modeling technique of AHO net systems

    Encoding Higher Level Extensions of Petri Nets in Answer Set Programming

    Full text link
    Answering realistic questions about biological systems and pathways similar to the ones used by text books to test understanding of students about biological systems is one of our long term research goals. Often these questions require simulation based reasoning. To answer such questions, we need formalisms to build pathway models, add extensions, simulate, and reason with them. We chose Petri Nets and Answer Set Programming (ASP) as suitable formalisms, since Petri Net models are similar to biological pathway diagrams; and ASP provides easy extension and strong reasoning abilities. We found that certain aspects of biological pathways, such as locations and substance types, cannot be represented succinctly using regular Petri Nets. As a result, we need higher level constructs like colored tokens. In this paper, we show how Petri Nets with colored tokens can be encoded in ASP in an intuitive manner, how additional Petri Net extensions can be added by making small code changes, and how this work furthers our long term research goals. Our approach can be adapted to other domains with similar modeling needs

    Automating the transformation-based analysis of visual languages

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/s00165-009-0114-yWe present a novel approach for the automatic generation of model-to-model transformations given a description of the operational semantics of the source language in the form of graph transformation rules. The approach is geared to the generation of transformations from Domain-Specific Visual Languages (DSVLs) into semantic domains with an explicit notion of transition, like for example Petri nets. The generated transformation is expressed in the form of operational triple graph grammar rules that transform the static information (initial model) and the dynamics (source rules and their execution control structure). We illustrate these techniques with a DSVL in the domain of production systems, for which we generate a transformation into Petri nets. We also tackle the description of timing aspects in graph transformation rules, and its analysis through their automatic translation into Time Petri netsWork sponsored by the Spanish Ministry of Science and Innovation, project METEORIC (TIN2008-02081/TIN) and by the Canadian Natural Sciences and Engineering Research Council (NSERC)

    Dependability Analysis of Control Systems using SystemC and Statistical Model Checking

    Get PDF
    Stochastic Petri nets are commonly used for modeling distributed systems in order to study their performance and dependability. This paper proposes a realization of stochastic Petri nets in SystemC for modeling large embedded control systems. Then statistical model checking is used to analyze the dependability of the constructed model. Our verification framework allows users to express a wide range of useful properties to be verified which is illustrated through a case study

    Subtyping for Hierarchical, Reconfigurable Petri Nets

    Full text link
    Hierarchical Petri nets allow a more abstract view and reconfigurable Petri nets model dynamic structural adaptation. In this contribution we present the combination of reconfigurable Petri nets and hierarchical Petri nets yielding hierarchical structure for reconfigurable Petri nets. Hierarchies are established by substituting transitions by subnets. These subnets are themselves reconfigurable, so they are supplied with their own set of rules. Moreover, global rules that can be applied in all of the net, are provided

    Semantic Embedding of Petri Nets into Event-B

    Full text link
    We present an embedding of Petri nets into B abstract systems. The embedding is achieved by translating both the static structure (modelling aspect) and the evolution semantics of Petri nets. The static structure of a Petri-net is captured within a B abstract system through a graph structure. This abstract system is then included in another abstract system which captures the evolution semantics of Petri-nets. The evolution semantics results in some B events depending on the chosen policies: basic nets or high level Petri nets. The current embedding enables one to use conjointly Petri nets and Event-B in the same system development, but at different steps and for various analysis.Comment: 16 pages, 3 figure

    Bisimilarity and Behaviour-Preserving Reconfigurations of Open Petri Nets

    Full text link
    We propose a framework for the specification of behaviour-preserving reconfigurations of systems modelled as Petri nets. The framework is based on open nets, a mild generalisation of ordinary Place/Transition nets suited to model open systems which might interact with the surrounding environment and endowed with a colimit-based composition operation. We show that natural notions of bisimilarity over open nets are congruences with respect to the composition operation. The considered behavioural equivalences differ for the choice of the observations, which can be single firings or parallel steps. Additionally, we consider weak forms of such equivalences, arising in the presence of unobservable actions. We also provide an up-to technique for facilitating bisimilarity proofs. The theory is used to identify suitable classes of reconfiguration rules (in the double-pushout approach to rewriting) whose application preserves the observational semantics of the net.Comment: To appear in "Logical Methods in Computer Science", 41 page
    • …
    corecore