5,563 research outputs found

    Multidisciplinary perspectives on Artificial Intelligence and the law

    Get PDF
    This open access book presents an interdisciplinary, multi-authored, edited collection of chapters on Artificial Intelligence (‘AI’) and the Law. AI technology has come to play a central role in the modern data economy. Through a combination of increased computing power, the growing availability of data and the advancement of algorithms, AI has now become an umbrella term for some of the most transformational technological breakthroughs of this age. The importance of AI stems from both the opportunities that it offers and the challenges that it entails. While AI applications hold the promise of economic growth and efficiency gains, they also create significant risks and uncertainty. The potential and perils of AI have thus come to dominate modern discussions of technology and ethics – and although AI was initially allowed to largely develop without guidelines or rules, few would deny that the law is set to play a fundamental role in shaping the future of AI. As the debate over AI is far from over, the need for rigorous analysis has never been greater. This book thus brings together contributors from different fields and backgrounds to explore how the law might provide answers to some of the most pressing questions raised by AI. An outcome of the Católica Research Centre for the Future of Law and its interdisciplinary working group on Law and Artificial Intelligence, it includes contributions by leading scholars in the fields of technology, ethics and the law.info:eu-repo/semantics/publishedVersio

    Digitalization and Development

    Get PDF
    This book examines the diffusion of digitalization and Industry 4.0 technologies in Malaysia by focusing on the ecosystem critical for its expansion. The chapters examine the digital proliferation in major sectors of agriculture, manufacturing, e-commerce and services, as well as the intermediary organizations essential for the orderly performance of socioeconomic agents. The book incisively reviews policy instruments critical for the effective and orderly development of the embedding organizations, and the regulatory framework needed to quicken the appropriation of socioeconomic synergies from digitalization and Industry 4.0 technologies. It highlights the importance of collaboration between government, academic and industry partners, as well as makes key recommendations on how to encourage adoption of IR4.0 technologies in the short- and long-term. This book bridges the concepts and applications of digitalization and Industry 4.0 and will be a must-read for policy makers seeking to quicken the adoption of its technologies

    Conversations on Empathy

    Get PDF
    In the aftermath of a global pandemic, amidst new and ongoing wars, genocide, inequality, and staggering ecological collapse, some in the public and political arena have argued that we are in desperate need of greater empathy — be this with our neighbours, refugees, war victims, the vulnerable or disappearing animal and plant species. This interdisciplinary volume asks the crucial questions: How does a better understanding of empathy contribute, if at all, to our understanding of others? How is it implicated in the ways we perceive, understand and constitute others as subjects? Conversations on Empathy examines how empathy might be enacted and experienced either as a way to highlight forms of otherness or, instead, to overcome what might otherwise appear to be irreducible differences. It explores the ways in which empathy enables us to understand, imagine and create sameness and otherness in our everyday intersubjective encounters focusing on a varied range of "radical others" – others who are perceived as being dramatically different from oneself. With a focus on the importance of empathy to understand difference, the book contends that the role of empathy is critical, now more than ever, for thinking about local and global challenges of interconnectedness, care and justice

    Shared-Control Teleoperation Paradigms on a Soft Growing Robot Manipulator

    Full text link
    Semi-autonomous telerobotic systems allow both humans and robots to exploit their strengths, while enabling personalized execution of a task. However, for new soft robots with degrees of freedom dissimilar to those of human operators, it is unknown how the control of a task should be divided between the human and robot. This work presents a set of interaction paradigms between a human and a soft growing robot manipulator, and demonstrates them in both real and simulated scenarios. The robot can grow and retract by eversion and inversion of its tubular body, a property we exploit to implement interaction paradigms. We implemented and tested six different paradigms of human-robot interaction, beginning with full teleoperation and gradually adding automation to various aspects of the task execution. All paradigms were demonstrated by two expert and two naive operators. Results show that humans and the soft robot manipulator can split control along degrees of freedom while acting simultaneously. In the simple pick-and-place task studied in this work, performance improves as the control is gradually given to the robot, because the robot can correct certain human errors. However, human engagement and enjoyment may be maximized when the task is at least partially shared. Finally, when the human operator is assisted by haptic feedback based on soft robot position errors, we observed that the improvement in performance is highly dependent on the expertise of the human operator.Comment: 15 pages, 14 figure

    Exploration autonome et efficiente de chantiers miniers souterrains inconnus avec un drone filaire

    Get PDF
    Abstract: Underground mining stopes are often mapped using a sensor located at the end of a pole that the operator introduces into the stope from a secure area. The sensor emits laser beams that provide the distance to a detected wall, thus creating a 3D map. This produces shadow zones and a low point density on the distant walls. To address these challenges, a research team from the Université de Sherbrooke is designing a tethered drone equipped with a rotating LiDAR for this mission, thus benefiting from several points of view. The wired transmission allows for unlimited flight time, shared computing, and real-time communication. For compatibility with the movement of the drone after tether entanglements, the excess length is integrated into an onboard spool, contributing to the drone payload. During manual piloting, the human factor causes problems in the perception and comprehension of a virtual 3D environment, as well as the execution of an optimal mission. This thesis focuses on autonomous navigation in two aspects: path planning and exploration. The system must compute a trajectory that maps the entire environment, minimizing the mission time and respecting the maximum onboard tether length. Path planning using a Rapidly-exploring Random Tree (RRT) quickly finds a feasible path, but the optimization is computationally expensive and the performance is variable and unpredictable. Exploration by the frontier method is representative of the space to be explored and the path can be optimized by solving a Traveling Salesman Problem (TSP) but existing techniques for a tethered drone only consider the 2D case and do not optimize the global path. To meet these challenges, this thesis presents two new algorithms. The first one, RRT-Rope, produces an equal or shorter path than existing algorithms in a significantly shorter computation time, up to 70% faster than the next best algorithm in a representative environment. A modified version of RRT-connect computes a feasible path, shortened with a deterministic technique that takes advantage of previously added intermediate nodes. The second algorithm, TAPE, is the first 3D cavity exploration method that focuses on minimizing mission time and unwound tether length. On average, the overall path is 4% longer than the method that solves the TSP, but the tether remains under the allowed length in 100% of the simulated cases, compared to 53% with the initial method. The approach uses a 2-level hierarchical architecture: global planning solves a TSP after frontier extraction, and local planning minimizes the path cost and tether length via a decision function. The integration of these two tools in the NetherDrone produces an intelligent system for autonomous exploration, with semi-autonomous features for operator interaction. This work opens the door to new navigation approaches in the field of inspection, mapping, and Search and Rescue missions.La cartographie des chantiers miniers souterrains est souvent réalisée à l’aide d’un capteur situé au bout d’une perche que l’opérateur introduit dans le chantier, depuis une zone sécurisée. Le capteur émet des faisceaux laser qui fournissent la distance à un mur détecté, créant ainsi une carte en 3D. Ceci produit des zones d’ombres et une faible densité de points sur les parois éloignées. Pour relever ces défis, une équipe de recherche de l’Université de Sherbrooke conçoit un drone filaire équipé d’un LiDAR rotatif pour cette mission, bénéficiant ainsi de plusieurs points de vue. La transmission filaire permet un temps de vol illimité, un partage de calcul et une communication en temps réel. Pour une compatibilité avec le mouvement du drone lors des coincements du fil, la longueur excédante est intégrée dans une bobine embarquée, qui contribue à la charge utile du drone. Lors d’un pilotage manuel, le facteur humain entraîne des problèmes de perception et compréhension d’un environnement 3D virtuel, et d’exécution d’une mission optimale. Cette thèse se concentre sur la navigation autonome sous deux aspects : la planification de trajectoire et l’exploration. Le système doit calculer une trajectoire qui cartographie l’environnement complet, en minimisant le temps de mission et en respectant la longueur maximale de fil embarquée. La planification de trajectoire à l’aide d’un Rapidly-exploring Random Tree (RRT) trouve rapidement un chemin réalisable, mais l’optimisation est coûteuse en calcul et la performance est variable et imprévisible. L’exploration par la méthode des frontières est représentative de l’espace à explorer et le chemin peut être optimisé en résolvant un Traveling Salesman Problem (TSP), mais les techniques existantes pour un drone filaire ne considèrent que le cas 2D et n’optimisent pas le chemin global. Pour relever ces défis, cette thèse présente deux nouveaux algorithmes. Le premier, RRT-Rope, produit un chemin égal ou plus court que les algorithmes existants en un temps de calcul jusqu’à 70% plus court que le deuxième meilleur algorithme dans un environnement représentatif. Une version modifiée de RRT-connect calcule un chemin réalisable, raccourci avec une technique déterministe qui tire profit des noeuds intermédiaires préalablement ajoutés. Le deuxième algorithme, TAPE, est la première méthode d’exploration de cavités en 3D qui minimise le temps de mission et la longueur du fil déroulé. En moyenne, le trajet global est 4% plus long que la méthode qui résout le TSP, mais le fil reste sous la longueur autorisée dans 100% des cas simulés, contre 53% avec la méthode initiale. L’approche utilise une architecture hiérarchique à 2 niveaux : la planification globale résout un TSP après extraction des frontières, et la planification locale minimise le coût du chemin et la longueur de fil via une fonction de décision. L’intégration de ces deux outils dans le NetherDrone produit un système intelligent pour l’exploration autonome, doté de fonctionnalités semi-autonomes pour une interaction avec l’opérateur. Les travaux réalisés ouvrent la porte à de nouvelles approches de navigation dans le domaine des missions d’inspection, de cartographie et de recherche et sauvetage

    AI: Limits and Prospects of Artificial Intelligence

    Get PDF
    The emergence of artificial intelligence has triggered enthusiasm and promise of boundless opportunities as much as uncertainty about its limits. The contributions to this volume explore the limits of AI, describe the necessary conditions for its functionality, reveal its attendant technical and social problems, and present some existing and potential solutions. At the same time, the contributors highlight the societal and attending economic hopes and fears, utopias and dystopias that are associated with the current and future development of artificial intelligence

    Design and Real-World Evaluation of Dependable Wireless Cyber-Physical Systems

    Get PDF
    The ongoing effort for an efficient, sustainable, and automated interaction between humans, machines, and our environment will make cyber-physical systems (CPS) an integral part of the industry and our daily lives. At their core, CPS integrate computing elements, communication networks, and physical processes that are monitored and controlled through sensors and actuators. New and innovative applications become possible by extending or replacing static and expensive cable-based communication infrastructures with wireless technology. The flexibility of wireless CPS is a key enabler for many envisioned scenarios, such as intelligent factories, smart farming, personalized healthcare systems, autonomous search and rescue, and smart cities. High dependability, efficiency, and adaptivity requirements complement the demand for wireless and low-cost solutions in such applications. For instance, industrial and medical systems should work reliably and predictably with performance guarantees, even if parts of the system fail. Because emerging CPS will feature mobile and battery-driven devices that can execute various tasks, the systems must also quickly adapt to frequently changing conditions. Moreover, as applications become ever more sophisticated, featuring compact embedded devices that are deployed densely and at scale, efficient designs are indispensable to achieve desired operational lifetimes and satisfy high bandwidth demands. Meeting these partly conflicting requirements, however, is challenging due to imperfections of wireless communication and resource constraints along several dimensions, for example, computing, memory, and power constraints of the devices. More precisely, frequent and correlated message losses paired with very limited bandwidth and varying delays for the message exchange significantly complicate the control design. In addition, since communication ranges are limited, messages must be relayed over multiple hops to cover larger distances, such as an entire factory. Although the resulting mesh networks are more robust against interference, efficient communication is a major challenge as wireless imperfections get amplified, and significant coordination effort is needed, especially if the networks are dynamic. CPS combine various research disciplines, which are often investigated in isolation, ignoring their complex interaction. However, to address this interaction and build trust in the proposed solutions, evaluating CPS using real physical systems and wireless networks paired with formal guarantees of a system’s end-to-end behavior is necessary. Existing works that take this step can only satisfy a few of the abovementioned requirements. Most notably, multi-hop communication has only been used to control slow physical processes while providing no guarantees. One of the reasons is that the current communication protocols are not suited for dynamic multi-hop networks. This thesis closes the gap between existing works and the diverse needs of emerging wireless CPS. The contributions address different research directions and are split into two parts. In the first part, we specifically address the shortcomings of existing communication protocols and make the following contributions to provide a solid networking foundation: • We present Mixer, a communication primitive for the reliable many-to-all message exchange in dynamic wireless multi-hop networks. Mixer runs on resource-constrained low-power embedded devices and combines synchronous transmissions and network coding for a highly scalable and topology-agnostic message exchange. As a result, it supports mobile nodes and can serve any possible traffic patterns, for example, to efficiently realize distributed control, as required by emerging CPS applications. • We present Butler, a lightweight and distributed synchronization mechanism with formally guaranteed correctness properties to improve the dependability of synchronous transmissions-based protocols. These protocols require precise time synchronization provided by a specific node. Upon failure of this node, the entire network cannot communicate. Butler removes this single point of failure by quickly synchronizing all nodes in the network without affecting the protocols’ performance. In the second part, we focus on the challenges of integrating communication and various control concepts using classical time-triggered and modern event-based approaches. Based on the design, implementation, and evaluation of the proposed solutions using real systems and networks, we make the following contributions, which in many ways push the boundaries of previous approaches: • We are the first to demonstrate and evaluate fast feedback control over low-power wireless multi-hop networks. Essential for this achievement is a novel co-design and integration of communication and control. Our wireless embedded platform tames the imperfections impairing control, for example, message loss and varying delays, and considers the resulting key properties in the control design. Furthermore, the careful orchestration of control and communication tasks enables real-time operation and makes our system amenable to an end-to-end analysis. Due to this, we can provably guarantee closed-loop stability for physical processes with linear time-invariant dynamics. • We propose control-guided communication, a novel co-design for distributed self-triggered control over wireless multi-hop networks. Self-triggered control can save energy by transmitting data only when needed. However, there are no solutions that bring those savings to multi-hop networks and that can reallocate freed-up resources, for example, to other agents. Our control system informs the communication system of its transmission demands ahead of time so that communication resources can be allocated accordingly. Thus, we can transfer the energy savings from the control to the communication side and achieve an end-to-end benefit. • We present a novel co-design of distributed control and wireless communication that resolves overload situations in which the communication demand exceeds the available bandwidth. As systems scale up, featuring more agents and higher bandwidth demands, the available bandwidth will be quickly exceeded, resulting in overload. While event-triggered control and self-triggered control approaches reduce the communication demand on average, they cannot prevent that potentially all agents want to communicate simultaneously. We address this limitation by dynamically allocating the available bandwidth to the agents with the highest need. Thus, we can formally prove that our co-design guarantees closed-loop stability for physical systems with stochastic linear time-invariant dynamics.:Abstract Acknowledgements List of Abbreviations List of Figures List of Tables 1 Introduction 1.1 Motivation 1.2 Application Requirements 1.3 Challenges 1.4 State of the Art 1.5 Contributions and Road Map 2 Mixer: Efficient Many-to-All Broadcast in Dynamic Wireless Mesh Networks 2.1 Introduction 2.2 Overview 2.3 Design 2.4 Implementation 2.5 Evaluation 2.6 Discussion 2.7 Related Work 3 Butler: Increasing the Availability of Low-Power Wireless Communication Protocols 3.1 Introduction 3.2 Motivation and Background 3.3 Design 3.4 Analysis 3.5 Implementation 3.6 Evaluation 3.7 Related Work 4 Feedback Control Goes Wireless: Guaranteed Stability over Low-Power Multi-Hop Networks 4.1 Introduction 4.2 Related Work 4.3 Problem Setting and Approach 4.4 Wireless Embedded System Design 4.5 Control Design and Analysis 4.6 Experimental Evaluation 4.A Control Details 5 Control-Guided Communication: Efficient Resource Arbitration and Allocation in Multi-Hop Wireless Control Systems 5.1 Introduction 5.2 Problem Setting 5.3 Co-Design Approach 5.4 Wireless Communication System Design 5.5 Self-Triggered Control Design 5.6 Experimental Evaluation 6 Scaling Beyond Bandwidth Limitations: Wireless Control With Stability Guarantees Under Overload 6.1 Introduction 6.2 Problem and Related Work 6.3 Overview of Co-Design Approach 6.4 Predictive Triggering and Control System 6.5 Adaptive Communication System 6.6 Integration and Stability Analysis 6.7 Testbed Experiments 6.A Proof of Theorem 4 6.B Usage of the Network Bandwidth for Control 7 Conclusion and Outlook 7.1 Contributions 7.2 Future Directions Bibliography List of Publication

    Category Theory for Autonomous Robots: The Marathon 2 Use Case

    Full text link
    Model-based systems engineering (MBSE) is a methodology that exploits system representation during the entire system life-cycle. The use of formal models has gained momentum in robotics engineering over the past few years. Models play a crucial role in robot design; they serve as the basis for achieving holistic properties, such as functional reliability or adaptive resilience, and facilitate the automated production of modules. We propose the use of formal conceptualizations beyond the engineering phase, providing accurate models that can be leveraged at runtime. This paper explores the use of Category Theory, a mathematical framework for describing abstractions, as a formal language to produce such robot models. To showcase its practical application, we present a concrete example based on the Marathon 2 experiment. Here, we illustrate the potential of formalizing systems -- including their recovery mechanisms -- which allows engineers to design more trustworthy autonomous robots. This, in turn, enhances their dependability and performance
    • …
    corecore