26 research outputs found

    Co-design of Reconfigurable and Multifunction Passive RF/Microwave Components

    Get PDF
    In order to meet the market demands, multi-band communication systems that are able to accommodate different wireless technologies to be compatible with different wireless standards should be investigated and realized. Multifunction and multi-band RF front-end components are promising solutions for reducing the size and enhancing the performance of multi-band communication systems. This dissertation focuses on the design and implementation of different multifunction and tunable microwave components for use in multi-standard, flexible transceiver. For frequency-domain duplexing (FDD) communication systems, in which the uplink and downlink channels are carried on different RF frequencies, a diplexer is an essential component to separate the transmitting and receiving signals from the antenna. Electrically tunable diplexers simplify the architecture of reconfigurable RF-front end. Moreover, in modern communication systems, the crowding of the spectrum and the scaling of electronics can result in higher common-mode interference and even-order non-linearity issues. In this dissertation, three tunable compact SIW-based dual-mode diplexers, with various SE (single-ended) and BAL (balanced) capabilities, are introduced for the first time. The dual-mode operation results in a dependent tuning between the two ports. The presented designs are for SE-SE, SE-BAL, and BAL-BAL. However, based on the presented design concepts, any combination of the diplexer ports can be achieved in terms of supporting the balanced and single-ended system interface. The fabricated diplexers show low insertion loss, high isolation, good tuning range and high common mode rejection. Tunable bandstop filter (BSF) is one of the essential components in the design of RF front-ends that require wide-band operations. A wide-open front-end leaves the receiver vulnerable to jamming by high-power signals. As a result, this type of front-ends requires dynamic isolation of any interfering signal. Realization of such filters in a balanced configuration, as a second function, is an important step in the realization of full-balanced RF front-ends. Balanced (differential) circuits have many important advantages over unbalanced (single-ended) circuits such as immunity to system noise, reduction of transient noise generation and inherent suppression of even-order nonlinearities. All reported balanced filters are bandpass filters that target wide pass-bands and high common-mode rejection. These filters are necessary for wide-band RF front-ends but, as mentioned above, leave the system open to interferers and jammers. In this dissertation, a new differential coupling structure for evanescent-mode cavity resonators is developed, enabling the design of fully-balanced tunable BSF. The proposed filter is tunable from 1.57-3.18 GHz with 102% tuning range. In addition, over the full range, the measured 10-dB fractional bandwidth ranges from 1-2.4%, and the attenuation level is better than 47 dB. Lastly, Substrate Integrated Waveguide (SIW) evanescent-mode cavity resonators (EVA) are employed in the design of RF couplers, quadrature hybrid and rat-race couplers. These couplers are used in the design of numerous RF front-end components such as power amplifiers, balanced mixers, and antenna array feeding networks. Utilizing such resonators (EVA) in the design allows the couplers to have wide spurious-free range, low power consumption, high power handling capability and both tunability and filtering capabilities. The proposed quadrature hybrid coupler can be tuned starting from 1.32–2.22 GHz with a measured insertion loss range from 1.29 to 0.7 dB. The measured reflection and isolation are better than 12 dB and 17 dB, respectively. Moreover, the coupler has a measured spurious free range of 5.1–3fo (lowest–highest frequency). Regarding rat-race coupler, two designs are introduced. The first design is based on a full-mode cavity while the second one is more compact and based on a half-mode cavity. Both designs show more than 70% tuning range, and the isolation is better than 30 dB

    Microwave Filters in Planar and Hybrid Technologies with Advanced Responses

    Full text link
    [ES] La presente tesis doctoral tiene como principal objetivo el estudio, diseño, desarrollo y fabricación de nuevos dispositivos pasivos de microondas, tales como filtros y multiplexores con respuestas avanzadas para aplicaciones de alto valor añadido (i.e. comerciales, militares, espacio); orientados a distintos servicios, actuales y futuros, en sistemas inalámbricos de comunicación. Además, esta investigación se centrará en el desarrollo de filtros encapsulados de montaje superficial y con un elevado grado de miniaturización. Para ello, se propone investigar distintas técnicas que consigan respuestas muy selectivas o con unas características exigentes en rechazo (mediante la flexible introducción de ceros de transmisión), así como una excelente planaridad en banda (aplicando técnicas tales como la mejora del Q o el diseño de filtros con pérdidas, lossy filters), obteniendo de este modo respuestas mejoradas, con respecto a soluciones conocidas, en los componentes de microondas desarrollados. De forma general, la metodología seguida se iniciará con una búsqueda y conocimiento del estado del arte sobre cada uno de los temas que se acometerán en esta tesis. Tras ello, se establecerá un procedimiento de síntesis que permitirá acometer de forma teórica los objetivos y especificaciones a conseguir en cada caso. Con ello, se establecerán las bases para iniciar el proceso de diseño, incluyendo co-simulación circuital/electromagnética y optimización que permitirán, en última instancia, implementar la solución planteada en cada caso de aplicación concreto. Finalmente, la demostración y validez de todas las investigaciones realizadas se llevará a cabo mediante la fabricación y caracterización experimental de distintos prototipos.[CA] La present tesi doctoral té com a principal objectiu l'estudi, disseny, desenvolupament I fabricació de nous dispositius passius de microones, com ara filtres i multiplexors amb respostes avançades per a aplicacions d'alt valor afegit, (comercials, militars, espai); orientats a oferir diferents serveis, actuals i futurs, en els diferents sistemes sense fils de comunicació. A més, aquesta investigació es centrarà en el desenvolupament de filtres encapsulats de muntatge superficial i amb un elevat grau de miniaturització. Per a això, es proposa investigar diferents tècniques que aconsegueixin respostes molt selectives o amb unes característiques exigents en rebuig (mitjançant la flexible introducció de zeros de transmissió), així com una excel·lent planaritat en banda (aplicant tècniques com ara la millora de l'Q o el disseny de filtres amb perdues, lossy filters), obtenint d'aquesta manera respostes millorades, respecte solucions conegudes, en els components de micrones desenvolupats. De forma general, la metodologia seguida s'iniciarà amb una recerca i coneixement de l'estat de l'art sobre cadascun dels temes que s'escometran en aquesta tesi. Després d'això, s'establirà un procediment de síntesi que permetrà escometre de forma teòrica els objectiusi especificacions a aconseguir en cada cas. Amb això, s'establiran les bases per iniciar el procés de disseny, amb co-simulació circuital / electromagnètica i optimització que permetran, en última instància, implementar la solució plantejada en cada cas d'aplicació concret. Finalment, la demostració i validesa de totes les investigacions realitzades es durà a terme mitjançant la fabricació i caracterització experimental de diferents prototips.[EN] The main objective of this doctoral thesis is the study, design, development and manufacture of new passive microwave components, such as filters and multiplexers with advanced responses for commercials, military and space applications; oriented to other different services, in current and future wireless communication systems. In addition, this research will focus on the development of surface-mounted encapsulated filters with a high degree of miniaturization. With this purpose, it is proposed to investigate different techniques that achieve highly selective responses or with demanding characteristics in rejection (through the flexible introduction of transmission zeros), as well as an excellent in-band planarity (applying techniques such as the Q enhancement or lossy filters), thus obtaining improved responses, with respect to known solutions, in the developed microwave components. In general, the followed methodology will begin with a search and knowledge of the state of the art on each of the topics addressed in this thesis. After that, a synthesis procedure will be established, which will allow the achievement of the objectives and specifications in a theoretical way, for each case. With this, the bases will be established to start the design process, with circuital and electromagnetic co-simulations and optimizations that will allow, ultimately, to implement the proposed solution, in every application case, specifically. Finally, the demonstration and validity of all the investigations will be carried out through the manufacture and experimental characterization of different prototypes.Marín Martínez, S. (2022). Microwave Filters in Planar and Hybrid Technologies with Advanced Responses [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/18894

    Enhancement of Millimeter-Band Transceivers with Gap Waveguide Technology

    Get PDF
    Mención Internacional en el título de doctorIt is known to all that year after year in modern society there is an urgent demand to consume wirelessly, and even stream ever larger multimedia content. High-frequency technologies have made it possible to go from transmitting analog voice and SMS text messages, to now transmitting live video in 4K quality from a mid-range smartphone. The way to measure these advances is by the bandwidth (Mb/s) reserved for each network user and the cost required to achieve it. To achieve even higher bandwidths, it is essential to improve signal coding techniques or increase the frequency of the signal, for example: to the mmWave bands (25GHz - 100 GHz), where these high-frequency techniques come into play. However, there is a frequency limit where current planar technology materials - such as the printed circuit boards used to build RF devices - are so lossy that they are not suitable at these mmWave frequencies. Current commercial solutions consist of guiding the electromagnetic energy with hollow metallic waveguides, but they suffer from the problem that as the frequency increases the diameter of these waveguides gets smaller and smaller, so manufacturing tolerances increase exorbitantly. Not to mention that they are usually manufactured in two parts, one upper and one lower, whose joints are not always perfect and produce energy losses. With these issues in mind, in 2009 the theory and basic science of a new electromagnetic energy guidance technology called Gap Waveguide was proposed, which is based on the use of metasurfaces constructed with periodic elements similar to a bed of nails. There are several implementations of this technology, but the three main ones are: Ridge, Groove and Inverted Microstrip Gap Waveguide. The latter is the most compatible with conventional planar manufacturing technologies and therefore the most cost-effective, although it also has drawbacks mainly in terms of losses when compared to the other versions. This thesis aims to deepen the study of the Inverted Microstrip guidance technology, its limitations and to develop with it some of the needed components in RF systems such as filters, diplexers, amplifiers, antennas, etc. Regarding the methodology for this thesis, a commercial simulation software for the analysis of antennas and components, CST Microwave Studio [1], has been used. AWR Microwave Office [2], a circuit simulator, has also been used to complement the simulations. On the other hand, there is a laboratory for the manufacture of prototypes in printed technology (with some limitations in terms of resolution) and the corresponding measurement laboratory, which includes network analyzers up to 40 GHz, spectrum analyzers and an anechoic chamber.This thesis arose under the Spanish Ministry of Science and Innovation (MINECO) and European Regional Development Fund (ERDF) project, called "Antenna for Mobile Satellite Communications (SATCOM) in Ka-Band by means of metasurfaces (2016-2019)", with reference TEC2016-79700-C2-2-R. Under this contract, the author signed an FPI research contract.Programa de Doctorado en Multimedia y Comunicaciones por la Universidad Carlos III de Madrid y la Universidad Rey Juan CarlosPresidente: Íñigo Cuiñas Gómez.- Secretario: Ángela María Coves Soler.- Vocal: Astrid Algaba Brazále

    When Compactness Meets Flexibility: Basic Coaxial SIW Filter Topology for Device Miniaturization, Design Flexibility, Advanced Filtering Responses, and Implementation of Tunable Filters

    Full text link
    [EN] Substrate integrated waveguide (SIW) technology [1], [2] is a well established and successful approach for implementing planar microwave filters with very stringent requirements in terms of quality (Q) factor and also with the ability to integrate into a system. Optimized SIW filters can reach a Q factor of 200-800 using low-loss substrates and standard fabrication procedures [3]. Furthermore, packaging and electromagnetic (EM) shielding, power-handling capabilities, and low-cost batch manufacturing are other broadly recognized strengths of this approach. However, SIW filters are still larger than most of their planar counterparts; in addition, advanced topologies are not always easy to accommodate, and filter reconfigurability usually leads to very complex implementation [4]-[6]Martínez Pérez, JD.; Sirci, S.; Boria Esbert, VE.; Sánchez-Soriano, MÁ. (2020). When Compactness Meets Flexibility: Basic Coaxial SIW Filter Topology for Device Miniaturization, Design Flexibility, Advanced Filtering Responses, and Implementation of Tunable Filters. IEEE Microwave Magazine. 21(6):58-78. https://doi.org/10.1109/MMM.2020.2979155S587821

    Analysis and Design of Low-Cost Waveguide Filters for Wireless Communications

    Get PDF
    The area of research of this thesis is built around advanced waveguide filter structures. Waveguide filters and the waveguide technology in general are renowned for high power capacity, low losses and excellent electromagnetic shielding. Waveguide filters are important components in fixed wireless communications as well as in satellite and radar systems. Furthermore, their advantages and utilization become even greater with increase in frequency, which is a trend in modern communication systems because upper frequency bands offer larger channel capacities. However, waveguide filters are relatively bulky and expensive. To comply with more and more demanding miniaturization and cost-cutting requirements, compactness and economical design represent some of the main contemporary focuses of interest. Approaches that are used to achieve this include use of planar inserts to build waveguide discontinuities, additive manufacturing and substrate integration. At the same time, waveguide filters still need to satisfy opposed stringent requirements like small insertion loss, high selectivity and multiband operation. Another difficulty that metal waveguide components face is integration with other circuitry, especially important when solid-state active devices are included. Thus, improvements of interconnections between waveguide and other transmission interfaces are addressed too. The thesis elaborates the following aspects of work: Further analysis and improved explanations regarding advanced waveguide filters with E-plane inserts developed by the Wireless Communications Research Group, using both cross coupled resonators and extracted pole sections (Experiments with higher filter orders, use of tuning screws, degrees of freedom in design, etc. Thorough performance comparison with competing filter technologies) - Proposing novel E-plane filter sections with I-shaped insets - Extension of the E-plane filtering structures with metal fins to new compact dual band filters with high frequency selectivity and miniaturized diplexers. - Introduction of easy-to-build waveguide filters with polymer insert frames and high-performance low-profile cavity filters, taking advantage of enhanced fabrication capabilities when using additive manufacturing - Developing new substrate integrated filters, as well as circuits used to transfer signals between different interfaces Namely, these are substrate integrated waveguide to metal waveguide planar transitions that do not require any modifications of the metal waveguides. Such novel transitions have been designed both for single and orthogonal signal polarizations

    Impedance Transformers

    Get PDF
    Non
    corecore