4,057 research outputs found

    Reactive power minimization of dual active bridge DC/DC converter with triple phase shift control using neural network

    Get PDF
    Reactive power flow increases dual active bridge (DAB) converter RMS current leading to an increase in conduction losses especially in high power applications. This paper proposes a new optimized triple phase shift (TPS) switching algorithm that minimizes the total reactive power of the converter. The algorithm iteratively searches for TPS control variables that satisfy the desired active power flow while selecting the operating mode with minimum reactive power consumption. This is valid for the whole range of converter operation. The iterative algorithm is run offline for the entire active power range (-1pu to 1pu) and the resulting data is used to train an open loop artificial neural network controller to reduce computational time and memory allocation necessary to store the data generated. To validate the accuracy of the proposed controller, a 500-MW 300kV/100kV DAB model is simulated in Matlab/Simulink, as a potential application for DAB in DC grids

    ASDTIC control and standardized interface circuits applied to buck, parallel and buck-boost dc to dc power converters

    Get PDF
    Versatile standardized pulse modulation nondissipatively regulated control signal processing circuits were applied to three most commonly used dc to dc power converter configurations: (1) the series switching buck-regulator, (2) the pulse modulated parallel inverter, and (3) the buck-boost converter. The unique control concept and the commonality of control functions for all switching regulators have resulted in improved static and dynamic performance and control circuit standardization. New power-circuit technology was also applied to enhance reliability and to achieve optimum weight and efficiency

    Analysis and Design of 3-Phase Unfolding Based AC-DC Battery Chargers

    Get PDF
    This thesis presents the analysis and design of high-efficiency battery chargers for heavy duty EV applications. The rise in popularity of the electric vehicles (EVs) due to their increased efficiency over conventional internal combustion engines, has driven the need for more battery charging infrastructure. Furthermore, heavy duty vehicles are also being converted to electric to fill needs such as public transportation via bus fleets as well as cargo delivery via semi-trucks. Such heavy duty vehicles require more energy than personal transportation vehicles and thus require larger battery packs. To charge heavy duty battery packs in the same amount of time as the typical EV, higher power chargers are required. Energy is distributed through the grid network, and a battery charger is converts the grid power into a regulated output for battery charging. The novel battery charging designs investigated in this thesis are classified differently than traditional designs because they have fewer switching stages to convert the power. The unique approach taken allows these designs to have higher efficiency overall than a traditional battery charger design. The new converter designs are refereed to as the three-level (3L) asymmetrical full bridge (3LAFB)and 3L asymmetrical dual active bridge (3LADAB). The operation of each converter is briefly discussed to help develop context for the hardware and controller designs. The controller design for the 3LAFB topology is developed to explain the control objectives of the 3-port dc-dc converter. Hardware results prototype designs are presented to validate proposed chargers and controller designs. A high power extreme fast charger (XFC) structure is proposed using multiple lower power modules. The high-efficiency design of a single module is presented and hardware results are given

    Study of a Symmetrical LLC Dual-Active Bridge Resonant Converter Topology for Battery Storage Systems

    Get PDF
    A symmetrical LLC resonant converter topology with a fixed-frequency quasi-triple phase-shift modulation method is proposed for battery-powered electric traction systems with extensions to other battery storage systems. Operation of the converter with these methods yields two unique transfer characteristics and is dependent on the switching frequency. The converter exhibits several desirable features: 1) load-independent buck-boost voltage conversion when operated at the low-impedance resonant frequency, allowing for dc-link voltage regulation, zero-voltage switching across a wide load range, and intrinsic load transient resilience; 2) power flow control when operated outside the low-impedance resonance for integrated battery charging; 3) and simple operational mode selection based on needed functionality with only a single control variable per mode. Derivation of the transfer characteristics for three operation cases using exponential Fourier series coefficients is presented. Pre-design evaluation of the S-LLC converter is presented using these analytical methods and corroborated through simulation. Furthermore, the construction of a rapid-prototyping magnetics design tool developed for high-frequency transformer designs inclusive of leakage inductance, which is leveraged to create the magnetic elements needed for this work. Two 2kW prototypes of the proposed topology are constructed to validate the analysis, with one prototype having a transformer incorporating the series resonant inductance and secondary clamp inductance into the transformer leakage and magnetizing inductance, respectively. A test bench is presented to validate the analysis methods and proposed multi-operational control scheme. Theoretical and experimental results are compared, thus demonstrating the feasibility of the new multi-mode operation scheme of the S-LLC converter topology

    Multilevel Converters: An Enabling Technology for High-Power Applications

    Get PDF
    | Multilevel converters are considered today as the state-of-the-art power-conversion systems for high-power and power-quality demanding applications. This paper presents a tutorial on this technology, covering the operating principle and the different power circuit topologies, modulation methods, technical issues and industry applications. Special attention is given to established technology already found in industry with more in-depth and self-contained information, while recent advances and state-of-the-art contributions are addressed with useful references. This paper serves as an introduction to the subject for the not-familiarized reader, as well as an update or reference for academics and practicing engineers working in the field of industrial and power electronics.Ministerio de Ciencia y Tecnología DPI2001-3089Ministerio de Eduación y Ciencia d TEC2006-0386

    An improved closed loop hybrid phase shift controller for dual active bridge converter

    Get PDF
    In this paper, a new closed loop hybrid phase shift control is proposed for dual active bridge (DAB) converter with variable input voltage. The extended phase shift (EPS) control is applied when load gets heavy enough and the secondary side phase shift angle decreases to zero. When this modified DAB converter operates at light loads, the triple phase shift (TPS) modulation method is applied, and the added control freedom is the secondary phase shift angle between the two-secondary side switching legs. The hybrid phase shift control (HPS) scheme is a combination of EPS and TPS modulations, and it provides a very simple closed form implementation for the primary and secondary side phase shift angles. Depending on the application by changing the phase shift angles we can achieve Buck or Boost operation. A characteristic table feedback control method has been used for closed loop operation. By using 1D look up table the proposed DAB converter provides constant 400V for any given input voltage

    A DC-DC Multiport Converter Based Solid State Transformer Integrating Distributed Generation and Storage

    Get PDF
    abstract: The development of a Solid State Transformer (SST) that incorporates a DC-DC multiport converter to integrate both photovoltaic (PV) power generation and battery energy storage is presented in this dissertation. The DC-DC stage is based on a quad-active-bridge (QAB) converter which not only provides isolation for the load, but also for the PV and storage. The AC-DC stage is implemented with a pulse-width-modulated (PWM) single phase rectifier. A unified gyrator-based average model is developed for a general multi-active-bridge (MAB) converter controlled through phase-shift modulation (PSM). Expressions to determine the power rating of the MAB ports are also derived. The developed gyrator-based average model is applied to the QAB converter for faster simulations of the proposed SST during the control design process as well for deriving the state-space representation of the plant. Both linear quadratic regulator (LQR) and single-input-single-output (SISO) types of controllers are designed for the DC-DC stage. A novel technique that complements the SISO controller by taking into account the cross-coupling characteristics of the QAB converter is also presented herein. Cascaded SISO controllers are designed for the AC-DC stage. The QAB demanded power is calculated at the QAB controls and then fed into the rectifier controls in order to minimize the effect of the interaction between the two SST stages. The dynamic performance of the designed control loops based on the proposed control strategies are verified through extensive simulation of the SST average and switching models. The experimental results presented herein show that the transient responses for each control strategy match those from the simulations results thus validating them.Dissertation/ThesisPh.D. Electrical Engineering 201
    corecore