19,617 research outputs found

    High-Dimensional Robust Mean Estimation via Gradient Descent

    Full text link
    We study the problem of high-dimensional robust mean estimation in the presence of a constant fraction of adversarial outliers. A recent line of work has provided sophisticated polynomial-time algorithms for this problem with dimension-independent error guarantees for a range of natural distribution families. In this work, we show that a natural non-convex formulation of the problem can be solved directly by gradient descent. Our approach leverages a novel structural lemma, roughly showing that any approximate stationary point of our non-convex objective gives a near-optimal solution to the underlying robust estimation task. Our work establishes an intriguing connection between algorithmic high-dimensional robust statistics and non-convex optimization, which may have broader applications to other robust estimation tasks.Comment: Under submission to ICML'2

    Robust Estimation via Robust Gradient Estimation

    Full text link
    We provide a new computationally-efficient class of estimators for risk minimization. We show that these estimators are robust for general statistical models: in the classical Huber epsilon-contamination model and in heavy-tailed settings. Our workhorse is a novel robust variant of gradient descent, and we provide conditions under which our gradient descent variant provides accurate estimators in a general convex risk minimization problem. We provide specific consequences of our theory for linear regression, logistic regression and for estimation of the canonical parameters in an exponential family. These results provide some of the first computationally tractable and provably robust estimators for these canonical statistical models. Finally, we study the empirical performance of our proposed methods on synthetic and real datasets, and find that our methods convincingly outperform a variety of baselines.Comment: 48 pages, 5 figure

    Defending Against Saddle Point Attack in Byzantine-Robust Distributed Learning

    Full text link
    We study robust distributed learning that involves minimizing a non-convex loss function with saddle points. We consider the Byzantine setting where some worker machines have abnormal or even arbitrary and adversarial behavior. In this setting, the Byzantine machines may create fake local minima near a saddle point that is far away from any true local minimum, even when robust gradient estimators are used. We develop ByzantinePGD, a robust first-order algorithm that can provably escape saddle points and fake local minima, and converge to an approximate true local minimizer with low iteration complexity. As a by-product, we give a simpler algorithm and analysis for escaping saddle points in the usual non-Byzantine setting. We further discuss three robust gradient estimators that can be used in ByzantinePGD, including median, trimmed mean, and iterative filtering. We characterize their performance in concrete statistical settings, and argue for their near-optimality in low and high dimensional regimes.Comment: ICML 201

    Securing Distributed Gradient Descent in High Dimensional Statistical Learning

    Full text link
    We consider unreliable distributed learning systems wherein the training data is kept confidential by external workers, and the learner has to interact closely with those workers to train a model. In particular, we assume that there exists a system adversary that can adaptively compromise some workers; the compromised workers deviate from their local designed specifications by sending out arbitrarily malicious messages. We assume in each communication round, up to qq out of the mm workers suffer Byzantine faults. Each worker keeps a local sample of size nn and the total sample size is N=nmN=nm. We propose a secured variant of the gradient descent method that can tolerate up to a constant fraction of Byzantine workers, i.e., q/m=O(1)q/m = O(1). Moreover, we show the statistical estimation error of the iterates converges in O(logN)O(\log N) rounds to O(q/N+d/N)O(\sqrt{q/N} + \sqrt{d/N}), where dd is the model dimension. As long as q=O(d)q=O(d), our proposed algorithm achieves the optimal error rate O(d/N)O(\sqrt{d/N}). Our results are obtained under some technical assumptions. Specifically, we assume strongly-convex population risk. Nevertheless, the empirical risk (sample version) is allowed to be non-convex. The core of our method is to robustly aggregate the gradients computed by the workers based on the filtering procedure proposed by Steinhardt et al. On the technical front, deviating from the existing literature on robustly estimating a finite-dimensional mean vector, we establish a {\em uniform} concentration of the sample covariance matrix of gradients, and show that the aggregated gradient, as a function of model parameter, converges uniformly to the true gradient function. To get a near-optimal uniform concentration bound, we develop a new matrix concentration inequality, which might be of independent interest

    Statistical consistency and asymptotic normality for high-dimensional robust M-estimators

    Full text link
    We study theoretical properties of regularized robust M-estimators, applicable when data are drawn from a sparse high-dimensional linear model and contaminated by heavy-tailed distributions and/or outliers in the additive errors and covariates. We first establish a form of local statistical consistency for the penalized regression estimators under fairly mild conditions on the error distribution: When the derivative of the loss function is bounded and satisfies a local restricted curvature condition, all stationary points within a constant radius of the true regression vector converge at the minimax rate enjoyed by the Lasso with sub-Gaussian errors. When an appropriate nonconvex regularizer is used in place of an l_1-penalty, we show that such stationary points are in fact unique and equal to the local oracle solution with the correct support---hence, results on asymptotic normality in the low-dimensional case carry over immediately to the high-dimensional setting. This has important implications for the efficiency of regularized nonconvex M-estimators when the errors are heavy-tailed. Our analysis of the local curvature of the loss function also has useful consequences for optimization when the robust regression function and/or regularizer is nonconvex and the objective function possesses stationary points outside the local region. We show that as long as a composite gradient descent algorithm is initialized within a constant radius of the true regression vector, successive iterates will converge at a linear rate to a stationary point within the local region. Furthermore, the global optimum of a convex regularized robust regression function may be used to obtain a suitable initialization. The result is a novel two-step procedure that uses a convex M-estimator to achieve consistency and a nonconvex M-estimator to increase efficiency.Comment: 56 pages, 8 figure

    Harnessing Structures in Big Data via Guaranteed Low-Rank Matrix Estimation

    Full text link
    Low-rank modeling plays a pivotal role in signal processing and machine learning, with applications ranging from collaborative filtering, video surveillance, medical imaging, to dimensionality reduction and adaptive filtering. Many modern high-dimensional data and interactions thereof can be modeled as lying approximately in a low-dimensional subspace or manifold, possibly with additional structures, and its proper exploitations lead to significant reduction of costs in sensing, computation and storage. In recent years, there is a plethora of progress in understanding how to exploit low-rank structures using computationally efficient procedures in a provable manner, including both convex and nonconvex approaches. On one side, convex relaxations such as nuclear norm minimization often lead to statistically optimal procedures for estimating low-rank matrices, where first-order methods are developed to address the computational challenges; on the other side, there is emerging evidence that properly designed nonconvex procedures, such as projected gradient descent, often provide globally optimal solutions with a much lower computational cost in many problems. This survey article will provide a unified overview of these recent advances on low-rank matrix estimation from incomplete measurements. Attention is paid to rigorous characterization of the performance of these algorithms, and to problems where the low-rank matrix have additional structural properties that require new algorithmic designs and theoretical analysis.Comment: To appear in IEEE Signal Processing Magazin

    Byzantine-Robust Distributed Learning: Towards Optimal Statistical Rates

    Full text link
    In large-scale distributed learning, security issues have become increasingly important. Particularly in a decentralized environment, some computing units may behave abnormally, or even exhibit Byzantine failures---arbitrary and potentially adversarial behavior. In this paper, we develop distributed learning algorithms that are provably robust against such failures, with a focus on achieving optimal statistical performance. A main result of this work is a sharp analysis of two robust distributed gradient descent algorithms based on median and trimmed mean operations, respectively. We prove statistical error rates for three kinds of population loss functions: strongly convex, non-strongly convex, and smooth non-convex. In particular, these algorithms are shown to achieve order-optimal statistical error rates for strongly convex losses. To achieve better communication efficiency, we further propose a median-based distributed algorithm that is provably robust, and uses only one communication round. For strongly convex quadratic loss, we show that this algorithm achieves the same optimal error rate as the robust distributed gradient descent algorithms

    Implicit Regularization via Hadamard Product Over-Parametrization in High-Dimensional Linear Regression

    Full text link
    We consider Hadamard product parametrization as a change-of-variable (over-parametrization) technique for solving least square problems in the context of linear regression. Despite the non-convexity and exponentially many saddle points induced by the change-of-variable, we show that under certain conditions, this over-parametrization leads to implicit regularization: if we directly apply gradient descent to the residual sum of squares with sufficiently small initial values, then under proper early stopping rule, the iterates converge to a nearly sparse rate-optimal solution with relatively better accuracy than explicit regularized approaches. In particular, the resulting estimator does not suffer from extra bias due to explicit penalties, and can achieve the parametric root-nn rate (independent of the dimension) under proper conditions on the signal-to-noise ratio. We perform simulations to compare our methods with high dimensional linear regression with explicit regularizations. Our results illustrate advantages of using implicit regularization via gradient descent after over-parametrization in sparse vector estimation

    The Landscape of Empirical Risk for Non-convex Losses

    Full text link
    Most high-dimensional estimation and prediction methods propose to minimize a cost function (empirical risk) that is written as a sum of losses associated to each data point. In this paper we focus on the case of non-convex losses, which is practically important but still poorly understood. Classical empirical process theory implies uniform convergence of the empirical risk to the population risk. While uniform convergence implies consistency of the resulting M-estimator, it does not ensure that the latter can be computed efficiently. In order to capture the complexity of computing M-estimators, we propose to study the landscape of the empirical risk, namely its stationary points and their properties. We establish uniform convergence of the gradient and Hessian of the empirical risk to their population counterparts, as soon as the number of samples becomes larger than the number of unknown parameters (modulo logarithmic factors). Consequently, good properties of the population risk can be carried to the empirical risk, and we can establish one-to-one correspondence of their stationary points. We demonstrate that in several problems such as non-convex binary classification, robust regression, and Gaussian mixture model, this result implies a complete characterization of the landscape of the empirical risk, and of the convergence properties of descent algorithms. We extend our analysis to the very high-dimensional setting in which the number of parameters exceeds the number of samples, and provide a characterization of the empirical risk landscape under a nearly information-theoretically minimal condition. Namely, if the number of samples exceeds the sparsity of the unknown parameters vector (modulo logarithmic factors), then a suitable uniform convergence result takes place. We apply this result to non-convex binary classification and robust regression in very high-dimension.Comment: This version presents a general framework, and applies it to several statistical learning problem

    Sever: A Robust Meta-Algorithm for Stochastic Optimization

    Full text link
    In high dimensions, most machine learning methods are brittle to even a small fraction of structured outliers. To address this, we introduce a new meta-algorithm that can take in a base learner such as least squares or stochastic gradient descent, and harden the learner to be resistant to outliers. Our method, Sever, possesses strong theoretical guarantees yet is also highly scalable -- beyond running the base learner itself, it only requires computing the top singular vector of a certain n×dn \times d matrix. We apply Sever on a drug design dataset and a spam classification dataset, and find that in both cases it has substantially greater robustness than several baselines. On the spam dataset, with 1%1\% corruptions, we achieved 7.4%7.4\% test error, compared to 13.4%20.5%13.4\%-20.5\% for the baselines, and 3%3\% error on the uncorrupted dataset. Similarly, on the drug design dataset, with 10%10\% corruptions, we achieved 1.421.42 mean-squared error test error, compared to 1.511.51-2.332.33 for the baselines, and 1.231.23 error on the uncorrupted dataset.Comment: To appear in ICML 201
    corecore