11,104 research outputs found

    Spatial Random Sampling: A Structure-Preserving Data Sketching Tool

    Full text link
    Random column sampling is not guaranteed to yield data sketches that preserve the underlying structures of the data and may not sample sufficiently from less-populated data clusters. Also, adaptive sampling can often provide accurate low rank approximations, yet may fall short of producing descriptive data sketches, especially when the cluster centers are linearly dependent. Motivated by that, this paper introduces a novel randomized column sampling tool dubbed Spatial Random Sampling (SRS), in which data points are sampled based on their proximity to randomly sampled points on the unit sphere. The most compelling feature of SRS is that the corresponding probability of sampling from a given data cluster is proportional to the surface area the cluster occupies on the unit sphere, independently from the size of the cluster population. Although it is fully randomized, SRS is shown to provide descriptive and balanced data representations. The proposed idea addresses a pressing need in data science and holds potential to inspire many novel approaches for analysis of big data

    High Dimensional Low Rank plus Sparse Matrix Decomposition

    Full text link
    This paper is concerned with the problem of low rank plus sparse matrix decomposition for big data. Conventional algorithms for matrix decomposition use the entire data to extract the low-rank and sparse components, and are based on optimization problems with complexity that scales with the dimension of the data, which limits their scalability. Furthermore, existing randomized approaches mostly rely on uniform random sampling, which is quite inefficient for many real world data matrices that exhibit additional structures (e.g. clustering). In this paper, a scalable subspace-pursuit approach that transforms the decomposition problem to a subspace learning problem is proposed. The decomposition is carried out using a small data sketch formed from sampled columns/rows. Even when the data is sampled uniformly at random, it is shown that the sufficient number of sampled columns/rows is roughly O(r\mu), where \mu is the coherency parameter and r the rank of the low rank component. In addition, adaptive sampling algorithms are proposed to address the problem of column/row sampling from structured data. We provide an analysis of the proposed method with adaptive sampling and show that adaptive sampling makes the required number of sampled columns/rows invariant to the distribution of the data. The proposed approach is amenable to online implementation and an online scheme is proposed.Comment: IEEE Transactions on Signal Processin

    Query-driven learning for predictive analytics of data subspace cardinality

    Get PDF
    Fundamental to many predictive analytics tasks is the ability to estimate the cardinality (number of data items) of multi-dimensional data subspaces, defined by query selections over datasets. This is crucial for data analysts dealing with, e.g., interactive data subspace explorations, data subspace visualizations, and in query processing optimization. However, in many modern data systems, predictive analytics may be (i) too costly money-wise, e.g., in clouds, (ii) unreliable, e.g., in modern Big Data query engines, where accurate statistics are difficult to obtain/maintain, or (iii) infeasible, e.g., for privacy issues. We contribute a novel, query-driven, function estimation model of analyst-defined data subspace cardinality. The proposed estimation model is highly accurate in terms of prediction and accommodating the well-known selection queries: multi-dimensional range and distance-nearest neighbors (radius) queries. Our function estimation model: (i) quantizes the vectorial query space, by learning the analysts’ access patterns over a data space, (ii) associates query vectors with their corresponding cardinalities of the analyst-defined data subspaces, (iii) abstracts and employs query vectorial similarity to predict the cardinality of an unseen/unexplored data subspace, and (iv) identifies and adapts to possible changes of the query subspaces based on the theory of optimal stopping. The proposed model is decentralized, facilitating the scaling-out of such predictive analytics queries. The research significance of the model lies in that (i) it is an attractive solution when data-driven statistical techniques are undesirable or infeasible, (ii) it offers a scale-out, decentralized training solution, (iii) it is applicable to different selection query types, and (iv) it offers a performance that is superior to that of data-driven approaches
    • …
    corecore