21 research outputs found

    PULP-HD: Accelerating Brain-Inspired High-Dimensional Computing on a Parallel Ultra-Low Power Platform

    Full text link
    Computing with high-dimensional (HD) vectors, also referred to as hypervectors\textit{hypervectors}, is a brain-inspired alternative to computing with scalars. Key properties of HD computing include a well-defined set of arithmetic operations on hypervectors, generality, scalability, robustness, fast learning, and ubiquitous parallel operations. HD computing is about manipulating and comparing large patterns-binary hypervectors with 10,000 dimensions-making its efficient realization on minimalistic ultra-low-power platforms challenging. This paper describes HD computing's acceleration and its optimization of memory accesses and operations on a silicon prototype of the PULPv3 4-core platform (1.5mm2^2, 2mW), surpassing the state-of-the-art classification accuracy (on average 92.4%) with simultaneous 3.7×\times end-to-end speed-up and 2×\times energy saving compared to its single-core execution. We further explore the scalability of our accelerator by increasing the number of inputs and classification window on a new generation of the PULP architecture featuring bit-manipulation instruction extensions and larger number of 8 cores. These together enable a near ideal speed-up of 18.4×\times compared to the single-core PULPv3

    An EMG Gesture Recognition System with Flexible High-Density Sensors and Brain-Inspired High-Dimensional Classifier

    Full text link
    EMG-based gesture recognition shows promise for human-machine interaction. Systems are often afflicted by signal and electrode variability which degrades performance over time. We present an end-to-end system combating this variability using a large-area, high-density sensor array and a robust classification algorithm. EMG electrodes are fabricated on a flexible substrate and interfaced to a custom wireless device for 64-channel signal acquisition and streaming. We use brain-inspired high-dimensional (HD) computing for processing EMG features in one-shot learning. The HD algorithm is tolerant to noise and electrode misplacement and can quickly learn from few gestures without gradient descent or back-propagation. We achieve an average classification accuracy of 96.64% for five gestures, with only 7% degradation when training and testing across different days. Our system maintains this accuracy when trained with only three trials of gestures; it also demonstrates comparable accuracy with the state-of-the-art when trained with one trial

    One-shot Learning for iEEG Seizure Detection Using End-to-end Binary Operations: Local Binary Patterns with Hyperdimensional Computing

    Full text link
    This paper presents an efficient binarized algorithm for both learning and classification of human epileptic seizures from intracranial electroencephalography (iEEG). The algorithm combines local binary patterns with brain-inspired hyperdimensional computing to enable end-to-end learning and inference with binary operations. The algorithm first transforms iEEG time series from each electrode into local binary pattern codes. Then atomic high-dimensional binary vectors are used to construct composite representations of seizures across all electrodes. For the majority of our patients (10 out of 16), the algorithm quickly learns from one or two seizures (i.e., one-/few-shot learning) and perfectly generalizes on 27 further seizures. For other patients, the algorithm requires three to six seizures for learning. Overall, our algorithm surpasses the state-of-the-art methods for detecting 65 novel seizures with higher specificity and sensitivity, and lower memory footprint.Comment: Published as a conference paper at the IEEE BioCAS 201

    Laelaps: An Energy-Efficient Seizure Detection Algorithm from Long-term Human iEEG Recordings without False Alarms

    Get PDF
    We propose Laelaps, an energy-efficient and fast learning algorithm with no false alarms for epileptic seizure detection from long-term intracranial electroencephalography (iEEG) signals. Laelaps uses end-to-end binary operations by exploiting symbolic dynamics and brain-inspired hyperdimensional computing. Laelaps's results surpass those yielded by state-of-the-art (SoA) methods [1], [2], [3], including deep learning, on a new very large dataset containing 116 seizures of 18 drug-resistant epilepsy patients in 2656 hours of recordings - each patient implanted with 24 to 128 iEEG electrodes. Laelaps trains 18 patient-specific models by using only 24 seizures: 12 models are trained with one seizure per patient, the others with two seizures. The trained models detect 79 out of 92 unseen seizures without any false alarms across all the patients as a big step forward in practical seizure detection. Importantly, a simple implementation of Laelaps on the Nvidia Tegra X2 embedded device achieves 1.7 7-3.9 7 faster execution and 1.4 7-2.9 7 lower energy consumption compared to the best result from the SoA methods. Our source code and anonymized iEEG dataset are freely available at http://ieeg-swez.ethz.ch

    Hyperdimensional Computing-based Multimodality Emotion Recognition with Physiological Signals

    Get PDF
    To interact naturally and achieve mutual sympathy between humans and machines, emotion recognition is one of the most important function to realize advanced human-computer interaction devices. Due to the high correlation between emotion and involuntary physiological changes, physiological signals are a prime candidate for emotion analysis. However, due to the need of a huge amount of training data for a high-quality machine learning model, computational complexity becomes a major bottleneck. To overcome this issue, brain-inspired hyperdimensional (HD) computing, an energy-efficient and fast learning computational paradigm, has a high potential to achieve a balance between accuracy and the amount of necessary training data. We propose an HD Computing-based Multimodality Emotion Recognition (HDC-MER). HDCMER maps real-valued features to binary HD vectors using a random nonlinear function, and further encodes them over time, and fuses across different modalities including GSR, ECG, and EEG. The experimental results show that, compared to the best method using the full training data, HDC-MER achieves higher classification accuracy for both valence (83.2% vs. 80.1%) and arousal (70.1% vs. 68.4%) using only 1/4 training data. HDC-MER also achieves at least 5% higher averaged accuracy compared to all the other methods in any point along the learning curve

    4.4 A 1.3TOPS/W @ 32GOPS Fully Integrated 10-Core SoC for IoT End-Nodes with 1.7μW Cognitive Wake-Up from MRAM-Based State-Retentive Sleep Mode

    Get PDF
    partially_open12siThis work was supported in part by the EU Horizon 2020 Research and Innovation projects OPRECOMP (Open trans-PREcision COMPuting, g.a. no. 732631) and WiPLASH (Wireless Plasticity for Heterogeneous Massive Computer Architectures, g.a. no. 863337) and by the ECSEL Horizon 2020 project AI4DI (Artificial Intelligence for Digital Industry, g.a. no. 826060).The Internet-of-Things requires end-nodes with ultra-low-power always-on capability for long battery lifetime, as well as high performance, energy efficiency, and extreme flexibility to deal with complex and fast-evolving near-sensor analytics algorithms (NSAAs). We present Vega, an always-on IoT end-node SoC capable of scaling from a 1.7mu W fully retentive COGNITIVE sleep mode up to 32.2GOPS (@49.4mW) peak performance on NSAAs, including mobile DNN inference, exploiting 1.6MB of state- retentive SRAM, and 4MB of non-volatile MRAM. To meet the performance and flexibility requirements of NSAAs, the SoC features 10 RISC-V cores: one core for SoC and IO management and a 9-core cluster supporting multi-precision SIMD integer and floating- point computation. Two programmable machine-learning (ML) accelerators boost energy efficiency in sleep and active state, respectively.embargoed_20210902Rossi D.; Conti F.; Eggiman M.; Mach S.; Mauro A.D.; Guermandi M.; Tagliavini G.; Pullini A.; Loi I.; Chen J.; Flamand E.; Benini L.Rossi D.; Conti F.; Eggiman M.; Mach S.; Mauro A.D.; Guermandi M.; Tagliavini G.; Pullini A.; Loi I.; Chen J.; Flamand E.; Benini L

    QubitHD: A Stochastic Acceleration Method for HD Computing-Based Machine Learning

    Full text link
    Machine Learning algorithms based on Brain-inspired Hyperdimensional (HD) computing imitate cognition by exploiting statistical properties of high-dimensional vector spaces. It is a promising solution for achieving high energy-efficiency in different machine learning tasks, such as classification, semi-supervised learning and clustering. A weakness of existing HD computing-based ML algorithms is the fact that they have to be binarized for achieving very high energy-efficiency. At the same time, binarized models reach lower classification accuracies. To solve the problem of the trade-off between energy-efficiency and classification accuracy, we propose the QubitHD algorithm. It stochastically binarizes HD-based algorithms, while maintaining comparable classification accuracies to their non-binarized counterparts. The FPGA implementation of QubitHD provides a 65% improvement in terms of energy-efficiency, and a 95% improvement in terms of the training time, as compared to state-of-the-art HD-based ML algorithms. It also outperforms state-of-the-art low-cost classifiers (like Binarized Neural Networks) in terms of speed and energy-efficiency by an order of magnitude during training and inference.Comment: 8 pages, 7 figures, 3 table

    Cellular Automata Can Reduce Memory Requirements of Collective-State Computing

    Full text link
    Various non-classical approaches of distributed information processing, such as neural networks, computation with Ising models, reservoir computing, vector symbolic architectures, and others, employ the principle of collective-state computing. In this type of computing, the variables relevant in a computation are superimposed into a single high-dimensional state vector, the collective-state. The variable encoding uses a fixed set of random patterns, which has to be stored and kept available during the computation. Here we show that an elementary cellular automaton with rule 90 (CA90) enables space-time tradeoff for collective-state computing models that use random dense binary representations, i.e., memory requirements can be traded off with computation running CA90. We investigate the randomization behavior of CA90, in particular, the relation between the length of the randomization period and the size of the grid, and how CA90 preserves similarity in the presence of the initialization noise. Based on these analyses we discuss how to optimize a collective-state computing model, in which CA90 expands representations on the fly from short seed patterns - rather than storing the full set of random patterns. The CA90 expansion is applied and tested in concrete scenarios using reservoir computing and vector symbolic architectures. Our experimental results show that collective-state computing with CA90 expansion performs similarly compared to traditional collective-state models, in which random patterns are generated initially by a pseudo-random number generator and then stored in a large memory.Comment: 13 pages, 11 figure
    corecore