10,497 research outputs found

    Reflectance Transformation Imaging (RTI) System for Ancient Documentary Artefacts

    No full text
    This tutorial summarises our uses of reflectance transformation imaging in archaeological contexts. It introduces the UK AHRC funded project reflectance Transformation Imaging for Anciant Documentary Artefacts and demonstrates imaging methodologies

    Kinect Range Sensing: Structured-Light versus Time-of-Flight Kinect

    Full text link
    Recently, the new Kinect One has been issued by Microsoft, providing the next generation of real-time range sensing devices based on the Time-of-Flight (ToF) principle. As the first Kinect version was using a structured light approach, one would expect various differences in the characteristics of the range data delivered by both devices. This paper presents a detailed and in-depth comparison between both devices. In order to conduct the comparison, we propose a framework of seven different experimental setups, which is a generic basis for evaluating range cameras such as Kinect. The experiments have been designed with the goal to capture individual effects of the Kinect devices as isolatedly as possible and in a way, that they can also be adopted, in order to apply them to any other range sensing device. The overall goal of this paper is to provide a solid insight into the pros and cons of either device. Thus, scientists that are interested in using Kinect range sensing cameras in their specific application scenario can directly assess the expected, specific benefits and potential problem of either device.Comment: 58 pages, 23 figures. Accepted for publication in Computer Vision and Image Understanding (CVIU

    Building with Drones: Accurate 3D Facade Reconstruction using MAVs

    Full text link
    Automatic reconstruction of 3D models from images using multi-view Structure-from-Motion methods has been one of the most fruitful outcomes of computer vision. These advances combined with the growing popularity of Micro Aerial Vehicles as an autonomous imaging platform, have made 3D vision tools ubiquitous for large number of Architecture, Engineering and Construction applications among audiences, mostly unskilled in computer vision. However, to obtain high-resolution and accurate reconstructions from a large-scale object using SfM, there are many critical constraints on the quality of image data, which often become sources of inaccuracy as the current 3D reconstruction pipelines do not facilitate the users to determine the fidelity of input data during the image acquisition. In this paper, we present and advocate a closed-loop interactive approach that performs incremental reconstruction in real-time and gives users an online feedback about the quality parameters like Ground Sampling Distance (GSD), image redundancy, etc on a surface mesh. We also propose a novel multi-scale camera network design to prevent scene drift caused by incremental map building, and release the first multi-scale image sequence dataset as a benchmark. Further, we evaluate our system on real outdoor scenes, and show that our interactive pipeline combined with a multi-scale camera network approach provides compelling accuracy in multi-view reconstruction tasks when compared against the state-of-the-art methods.Comment: 8 Pages, 2015 IEEE International Conference on Robotics and Automation (ICRA '15), Seattle, WA, US

    Challenges in 3D scanning: Focusing on Ears and Multiple View Stereopsis

    Get PDF

    A novel low-cost autonomous 3D LIDAR system

    Get PDF
    Thesis (M.S.) University of Alaska Fairbanks, 2018To aid in humanity's efforts to colonize alien worlds, NASA's Robotic Mining Competition pits universities against one another to design autonomous mining robots that can extract the materials necessary for producing oxygen, water, fuel, and infrastructure. To mine autonomously on the uneven terrain, the robot must be able to produce a 3D map of its surroundings and navigate around obstacles. However, sensors that can be used for 3D mapping are typically expensive, have high computational requirements, and/or are designed primarily for indoor use. This thesis describes the creation of a novel low-cost 3D mapping system utilizing a pair of rotating LIDAR sensors, attached to a mobile testing platform. Also, the use of this system for 3D obstacle detection and navigation is shown. Finally, the use of deep learning to improve the scanning efficiency of the sensors is investigated.Chapter 1. Introduction -- 1.1. Purpose -- 1.2. 3D sensors -- 1.2.1. Cameras -- 1.2.2. RGB-D Cameras -- 1.2.3. LIDAR -- 1.3. Overview of Work and Contributions -- 1.4. Multi-LIDAR and Rotating LIDAR Systems -- 1.5. Thesis Organization. Chapter 2. Hardware -- 2.1. Overview -- 2.2. Components -- 2.2.1. Revo Laser Distance Sensor -- 2.2.2. Dynamixel AX-12A Smart Serial Servo -- 2.2.3. Bosch BNO055 Inertial Measurement Unit -- 2.2.4. STM32F767ZI Microcontroller and LIDAR Interface Boards -- 2.2.5. Create 2 Programmable Mobile Robotic Platform -- 2.2.6. Acer C720 Chromebook and Genius Webcam -- 2.3. System Assembly -- 2.3.1. 3D LIDAR Module -- 2.3.2. Full Assembly. Chapter 3. Software -- 3.1. Robot Operating System -- 3.2. Frames of Reference -- 3.3. System Overview -- 3.4. Microcontroller Firmware -- 3.5. PC-Side Point Cloud Fusion -- 3.6. Localization System -- 3.6.1. Fusion of Wheel Odometry and IMU Data -- 3.6.2. ArUco Marker Localization -- 3.6.3. ROS Navigation Stack: Overview & Configuration -- 3.6.3.1. Costmaps -- 3.6.3.2. Path Planners. Chapter 4. System Performance -- 4.1. VS-LIDAR Characteristics -- 4.2. Odometry Tests -- 4.3. Stochastic Scan Dithering -- 4.4. Obstacle Detection Test -- 4.5. Navigation Tests -- 4.6. Detection of Black Obstacles -- 4.7. Performance in Sunlit Environments -- 4.8. Distance Measurement Comparison. Chapter 5. Case Study: Adaptive Scan Dithering -- 5.1. Introduction -- 5.2. Adaptive Scan Dithering Process Overview -- 5.3. Coverage Metrics -- 5.4. Reward Function -- 5.5. Network Configuration -- 5.6. Performance and Remarks. Chapter 6. Conclusions and Future Work -- 6.1. Conclusions -- 6.2. Future Work -- 6.3. Lessons Learned -- References

    Heritage Recording and 3D Modeling with Photogrammetry and 3D Scanning

    Get PDF
    The importance of landscape and heritage recording and documentation with optical remote sensing sensors is well recognized at international level. The continuous development of new sensors, data capture methodologies and multi-resolution 3D representations, contributes significantly to the digital 3D documentation, mapping, conservation and representation of landscapes and heritages and to the growth of research in this field. This article reviews the actual optical 3D measurement sensors and 3D modeling techniques, with their limitations and potentialities, requirements and specifications. Examples of 3D surveying and modeling of heritage sites and objects are also shown throughout the paper
    • …
    corecore