31 research outputs found

    Reversible Data Hiding in Encrypted Images Using MSBs Integration and Histogram Modification

    Full text link
    This paper presents a reversible data hiding in encrypted image that employs based notions of the RDH in plain-image schemes including histogram modification and prediction-error computation. In the proposed method, original image may be encrypted by desire encryption algorithm. Most significant bit (MSB) of encrypted pixels are integrated to vacate room for embedding data bits. Integrated ones will be more resistant against failure of reconstruction if they are modified for embedding data bits. At the recipient, we employ chess-board predictor for lossless reconstruction of the original image by the aim of prediction-error analysis. Comparing to existent RDHEI algorithms, not only we propose a separable method to extract data bits, but also content-owner may attain a perfect reconstruction of the original image without having data hider key. Experimental results confirm that the proposed algorithm outperforms state of the art ones

    High Capacity Reversible Data Hiding for Encrypted 3D Mesh Models Based on Topology

    Full text link
    Reversible data hiding in encrypted domain(RDH-ED) can not only protect the privacy of 3D mesh models and embed additional data, but also recover original models and extract additional data losslessly. However, due to the insufficient use of model topology, the existing methods have not achieved satisfactory results in terms of embedding capacity. To further improve the capacity, a RDH-ED method is proposed based on the topology of the 3D mesh models, which divides the vertices into two parts: embedding set and prediction set. And after integer mapping, the embedding ability of the embedding set is calculated by the prediction set. It is then passed to the data hider for embedding additional data. Finally, the additional data and the original models can be extracted and recovered respectively by the receiver with the correct keys. Experiments declare that compared with the existing methods, this method can obtain the highest embedding capacity

    A contrast-sensitive reversible visible image watermarking technique

    Get PDF
    A reversible (also called lossless, distortion-free, or invertible) visible watermarking scheme is proposed to satisfy the applications, in which the visible watermark is expected to combat copyright piracy but can be removed to losslessly recover the original image. We transparently reveal the watermark image by overlapping it on a user-specified region of the host image through adaptively adjusting the pixel values beneath the watermark, depending on the human visual system-based scaling factors. In order to achieve reversibility, a reconstruction/ recovery packet, which is utilized to restore the watermarked area, is reversibly inserted into non-visibly-watermarked region. The packet is established according to the difference image between the original image and its approximate version instead of its visibly watermarked version so as to alleviate its overhead. For the generation of the approximation, we develop a simple prediction technique that makes use of the unaltered neighboring pixels as auxiliary information. The recovery packet is uniquely encoded before hiding so that the original watermark pattern can be reconstructed based on the encoded packet. In this way, the image recovery process is carried out without needing the availability of the watermark. In addition, our method adopts data compression for further reduction in the recovery packet size and improvement in embedding capacity. The experimental results demonstrate the superiority of the proposed scheme compared to the existing methods
    corecore