48 research outputs found

    High accuracy semidefinite programming bounds for kissing numbers

    Get PDF
    The kissing number in n-dimensional Euclidean space is the maximal number of non-overlapping unit spheres which simultaneously can touch a central unit sphere. Bachoc and Vallentin developed a method to find upper bounds for the kissing number based on semidefinite programming. This paper is a report on high accuracy calculations of these upper bounds for n <= 24. The bound for n = 16 implies a conjecture of Conway and Sloane: There is no 16-dimensional periodic point set with average theta series 1 + 7680q^3 + 4320q^4 + 276480q^5 + 61440q^6 + ...Comment: 7 pages (v3) new numerical result in Section 4, to appear in Experiment. Mat

    High accuracy semidefinite programming bounds for kissing numbers

    Get PDF
    The kissing number in n-dimensional Euclidean space is the maximal number of non-overlapping unit spheres which simultaneously can touch a central unit sphere. Bachoc and Vallentin developed a method to find upper bounds for the kissing number based on semidefinite programming. This paper is a report on high accuracy calculations of these upper bounds for n <= 24. The bound for n = 16 implies a conjecture of Conway and Sloane: There is no 16-dimensional periodic point set with average theta series 1 + 7680q^3 + 4320q^4 + 276480q^5 + 61440q^6 + ..

    Contact graphs of ball packings

    Get PDF
    A contact graph of a packing of closed balls is a graph with balls as vertices and pairs of tangent balls as edges. We prove that the average degree of the contact graph of a packing of balls (with possibly different radii) in R3\mathbb{R}^3 is not greater than 13.95513.955. We also find new upper bounds for the average degree of contact graphs in R4\mathbb{R}^4 and R5\mathbb{R}^5

    Positive semidefinite approximations to the cone of copositive kernels

    Full text link
    It has been shown that the maximum stable set problem in some infinite graphs, and the kissing number problem in particular, reduces to a minimization problem over the cone of copositive kernels. Optimizing over this infinite dimensional cone is not tractable, and approximations of this cone have been hardly considered in literature. We propose two convergent hierarchies of subsets of copositive kernels, in terms of non-negative and positive definite kernels. We use these hierarchies and representation theorems for invariant positive definite kernels on the sphere to construct new SDP-based bounds on the kissing number. This results in fast-to-compute upper bounds on the kissing number that lie between the currently existing LP and SDP bounds.Comment: 29 pages, 2 tables, 1 figur
    corecore