71 research outputs found

    An efficient interpolation filter VLSI architecture for HEVC standard

    Get PDF

    High-Level Synthesis Based VLSI Architectures for Video Coding

    Get PDF
    High Efficiency Video Coding (HEVC) is state-of-the-art video coding standard. Emerging applications like free-viewpoint video, 360degree video, augmented reality, 3D movies etc. require standardized extensions of HEVC. The standardized extensions of HEVC include HEVC Scalable Video Coding (SHVC), HEVC Multiview Video Coding (MV-HEVC), MV-HEVC+ Depth (3D-HEVC) and HEVC Screen Content Coding. 3D-HEVC is used for applications like view synthesis generation, free-viewpoint video. Coding and transmission of depth maps in 3D-HEVC is used for the virtual view synthesis by the algorithms like Depth Image Based Rendering (DIBR). As first step, we performed the profiling of the 3D-HEVC standard. Computational intensive parts of the standard are identified for the efficient hardware implementation. One of the computational intensive part of the 3D-HEVC, HEVC and H.264/AVC is the Interpolation Filtering used for Fractional Motion Estimation (FME). The hardware implementation of the interpolation filtering is carried out using High-Level Synthesis (HLS) tools. Xilinx Vivado Design Suite is used for the HLS implementation of the interpolation filters of HEVC and H.264/AVC. The complexity of the digital systems is greatly increased. High-Level Synthesis is the methodology which offers great benefits such as late architectural or functional changes without time consuming in rewriting of RTL-code, algorithms can be tested and evaluated early in the design cycle and development of accurate models against which the final hardware can be verified

    Low energy HEVC and VVC video compression hardware

    Get PDF
    Video compression standards compress a digital video by reducing and removing redundancy in the digital video using computationally complex algorithms. As spatial and temporal resolutions of videos increase, compression efficiencies of video compression algorithms are also increasing. However, increased compression efficiency comes with increased computational complexity. Therefore, it is necessary to reduce computational complexities of video compression algorithms without reducing their visual quality in order to reduce area and energy consumption of their hardware implementations. In this thesis, we propose a novel technique for reducing amount of computations performed by HEVC intra prediction algorithm. We designed low energy, reconfigurable HEVC intra prediction hardware using the proposed technique. We also designed a low energy FPGA implementation of HEVC intra prediction algorithm using the proposed technique and DSP blocks. We propose a reconfigurable VVC intra prediction hardware architecture. We also propose an efficient VVC intra prediction hardware architecture using DSP blocks. We designed low energy VVC fractional interpolation hardware. We propose a novel approximate absolute difference technique. We designed low energy approximate absolute difference hardware using the proposed technique. We propose a novel approximate constant multiplication technique. We designed approximate constant multiplication hardware using the proposed technique. We quantified computation reductions achieved by the proposed techniques and video quality loss caused by the proposed approximation techniques. The proposed approximate absolute difference technique and approximate constant multiplication technique cause very small PSNR loss. The other proposed techniques cause no PSNR loss. We implemented the proposed hardware architectures in Verilog HDL. We mapped the Verilog RTL codes to Xilinx Virtex 6 or Xilinx Virtex 7 FPGAs and estimated their power consumptions using Xilinx XPower Analyzer tool. The proposed techniques significantly reduced power and energy consumptions of these FPGA implementation

    FGPA implementations of motion estimation algorithms using Vivado high level synthesis

    Get PDF
    Joint collaborative team on video coding (JCT-VC) recently developed a new international video compression standard called High Efficiency Video Coding (HEVC). HEVC has 50% better compression efficiency than previous H.264 video compression standard. HEVC achieves this video compression efficiency by significantly increasing the computational complexity. Motion estimation is the most computationally complex part of video encoders. Integer motion estimation and fractional motion estimation account for 70% of the computational complexity of an HEVC video encoder. High-level synthesis (HLS) tools are started to be successfully used for FPGA implementations of digital signal processing algorithms. They significantly decrease design and verification time. Therefore, in this thesis, we proposed the first FPGA implementation of HEVC full search motion estimation using Vivado HLS. Then, we proposed the first FPGA implementations of two fast search (diamond search and TZ search) algorithms using Vivado HLS. Finally, we proposed the first FPGA implementations of HEVC fractional interpolation and motion estimation using Vivado HLS. We used several HLS optimization directives to increase performance and decrease area of these FPGA implementations

    An HEVC fractional interpolation hardware using memory based constant multiplication

    Get PDF
    Fractional interpolation is one of the most computationally intensive parts of High Efficiency Video Coding (HEVC) video encoder and decoder. In this paper, an HEVC fractional interpolation hardware using memory based constant multiplication is proposed. The proposed hardware uses memory based constant multiplication technique for implementing multiplication with constant coefficients. The proposed memory based constant multiplication hardware stores pre-computed products of an input pixel with multiple constant coefficients in memory. Several optimizations are proposed to reduce memory size. The proposed HEVC fractional interpolation hardware, in the worst case, can process 35 quad full HD (3840×2160) video frames per second. It has up to 31% less energy consumption than original HEVC fractional interpolation hardware

    High performance HEVC and FVC video compression hardware designs

    Get PDF
    High Efficiency Video Coding (HEVC) is the current state-of-the-art video compression standard developed by Joint collaborative team on video coding (JCT-VC). HEVC has 50% better compression efficiency than H.264 which is the previous video compression standard. HEVC achieves this video compression efficiency by significantly increasing the computational complexity. Therefore, in this thesis, we proposed a low complexity HEVC sub-pixel motion estimation (SPME) technique for SPME in HEVC encoder. We designed and implemented a high performance HEVC SPME hardware implementing the proposed technique. We also designed and implemented an HEVC fractional interpolation hardware using memory based constant multiplication technique for both HEVC encoder and decoder. Future Video Coding (FVC) is a new international video compression standard which is currently being developed by JCT-VC. FVC offers much better compression efficiency than the state-of-the-art HEVC video compression standard at the expense of much higher computational complexity. In this thesis, we designed and implemented three different high performance FVC 2D transform hardware. The proposed hardware is verified to work correctly on an FPGA board

    HEVC의 소수 단위 움직임 추정을 위한 보간 필터 중복 연산 감소 방법

    Get PDF
    학위논문 (석사)-- 서울대학교 대학원 : 전기·컴퓨터공학부, 2016. 8. 이혁재.High-Efficiency Video Coding (HEVC) [1] is the latest video coding standard established by Joint Collaborative Team on Video Coding (JCT-VC) aiming to achieve twice encoding efficiency with comparatively high video quality compared to its predecessor, the H.264 standard. Motion Estimation (ME) which consists of integer motion estimation (IME) and fractional motion estimation (FME) is the bottleneck of HEVC computation. In the execution of the HM reference software, ME alone accounts for about 50 % of the execution time in which IME contributes to about 20 % and FME does around 30% [2].The FMEs enormous computational complexity can be explained by two following reasons: • A large number of FME refinements processed: In HEVC, a frame is divided into CTU, whose size is usually 64x64 pixels. One 64x64 CTU consists of 85 CUs including one 64x64 CU at depth 0, four 32x32 CUs at depth 1, 16 16x16 CUs at depth 2, and 64 8x8 CUs at depth 3. Each CU can be partitioned into PUs according to a set of 8 allowable partition types. An HEVC encoder processes FME refinement for all possible PUs with usually 4 reference frames before deciding the best configuration for a CTU. As a result, typically in HEVCs reference software, HM, for one CTU, it has to process 2,372 FME refinements, which consumes a lot of computational resources. • A complicated and redundant interpolation process: Conventionally, FME refinement, which consists of interpolation and sum of absolute transformed difference (SATD), is processed for every PU in 4 reference frames. As a result, for a 64x64 CTU, in order to process fractional pixel refinement, FME needs to interpolate 6,232,900 fractional pixels. In addition, In HEVC, fractional pixels which consist half fractional pixels and quarter fractional pixels, are interpolated by 8-tap filters and 7-tap filters instead of 6-tap filters and bilinear filters as previous standards. As a result, interpolation process in FME imposes an extreme computational burden on HEVC encoders. This work proposes two algorithms which tackle each one of the two above reasons. The first algorithm, Advanced Decision of PU Partitions and CU Depths for FME, estimates the cost of IMEs and selects the PU partition types at the CU level and the CU depths at the coding tree unit (CTU) level for FME. Experimental results show that the algorithm effectively reduces the complexity by 67.47% with a BD-BR degrade of 1.08%. The second algorithm, A Reduction of the Interpolation Redundancy for FME, reduces up to 86.46% interpolation computation without any encoding performance decrease. The combination of the two algorithms forms a coherent solution to reduce the complexity of FME. Considering interpolation is a half of the complexity of an FME refinement, then the complexity of FME could be reduced more than 85% with a BD-BR increase of 1.66%Chapter 1. Introduction 1 1. Introduction to Video Coding 1 1.1. Definition of Video Coding 1 1.2. The Need of Video Coding 1 1.3. Basics of Video Coding 2 1.4. Video Coding Standard 2 2. Introduction to HEVC 6 2.1. HEVC Background and Development 6 2.2. Block Partitioning Structure in HEVC 9 Chapter 2. Fractional Motion Estimation in HEVC and Related Works on Complexity Reduction 21 1. Motion Estimation 21 2. Fractional Motion Estimation 22 2.1. Interpolation 22 2.2. Sum of Absolute Transformed Difference Calculation 27 2.3. Fractional Motion Estimation Procedure 28 Chapter 3. Complexity Reduction for FME 31 1. Problem Statement and Previous Studies 31 1.1. Problem Statement 31 1.2. Previous Studies 32 2. Proposed Algorithms 34 2.1. Advanced Decision of PU Partitions and CU Depths for Fractional Motion Estimation in HEVC 34 2.2. Range-based interpolation algorithm 40 Chapter 4. Experiment Results 43 1. Advanced Decision of PU Partitions and CU Depths for Fractional Motion Estimation in HEVC Algorithms 43 1.1. Advanced Decision of PU Partitions 43 1.2. Advanced Decision of CU Partitions 47 1.3. Combination of Advanced PU Partition and CU Depth Decision 47 1.4. Comparison with Other Similar Works 48 2. Range-based Algorithm 49 2.1. Software Implementation 49 2.2. Hardware Implementation of the Algorithm 50 Chapter 5. Conclusion 61 Bibliography 64 Abstract in Korean 66Maste

    Cost and Coding Efficient Motion Estimation Design Considerations for High Efficiency Video Coding (HEVC) Standard

    Get PDF
    This paper focuses on motion estimation engine design in future high-efficiency video coding (HEVC) encoders. First, a methodology is explained to analyze hardware implementation cost in terms of hardware area, memory size and memory bandwidth for various possible motion estimation engine designs. For 11 different configurations, hardware cost as well as the coding efficiency are quantified and are compared through a graphical analysis to make design decisions. It has been shown that using smaller block sizes (e.g. 4 × 4) imposes significantly larger hardware requirements at the expense of modest improvements in coding efficiency. Secondly, based on the analysis on various configurations, one configuration is chosen and algorithm improvements are presented to further reduce hardware implementation cost of the selected configuration. Overall, the proposed changes provide 56 × on-chip bandwidth, 151 × off-chip bandwidth, 4.3 × core area and 4.5 × on-chip memory area savings when compared to the hardware implementation of the HM-3.0 design.Texas Instruments Incorporate

    Low energy video processing and compression hardware designs

    Get PDF
    Digital video processing and compression algorithms are used in many commercial products such as mobile devices, unmanned aerial vehicles, and autonomous cars. Increasing resolution of videos used in these commercial products increased computational complexities of digital video processing and compression algorithms. Therefore, it is necessary to reduce computational complexities of digital video processing and compression algorithms, and energy consumptions of digital video processing and compression hardware without reducing visual quality. In this thesis, we propose a novel adaptive 2D digital image processing algorithm for 2D median filter, Gaussian blur and image sharpening. We designed low energy 2D median filter, Gaussian blur and image sharpening hardware using the proposed algorithm. We propose approximate HEVC intra prediction and HEVC fractional interpolation algorithms. We designed low energy approximate HEVC intra prediction and HEVC fractional interpolation hardware. We also propose several HEVC fractional interpolation hardware architectures. We propose novel computational complexity and energy reduction techniques for HEVC DCT and inverse DCT/DST. We designed high performance and low energy hardware for HEVC DCT and inverse DCT/DST including the proposed techniques. VII We quantified computation reductions achieved and video quality loss caused by the proposed algorithms and techniques. We implemented the proposed hardware architectures in Verilog HDL. We mapped the Verilog RTL codes to Xilinx Virtex 6 and Xilinx ZYNQ FPGAs, and estimated their power consumptions using Xilinx XPower Analyzer tool. The proposed algorithms and techniques significantly reduced the power and energy consumptions of these FPGA implementations in some cases with no PSNR loss and in some cases with very small PSNR loss
    corecore