50 research outputs found

    Distributed, Advanced Fiber Optic Sensors

    Get PDF
    India is poised to use nuclear energy in a big way. The safety of these systems depends upon monitoring various parameters in hazardous environment like high radiation, high temperature exceeding 1000°C, and gas/coolant leakages. In this chapter, we shall dwell on basics of distributed sensing, related instrumentation, device fabrication, and actual advanced field applications. Techniques like Raman scattering, resonance response of fiber gratings, and selective absorption are employed for design, development, and fabrication of distributed sensors and devices. Raman distributed sensors with advanced data processing techniques are finding increasing applications for fire detection, coolant leak detection, and safety of large structures. The systematic investigations related to portable systems developed at the author’s lab have been described. Wavelength-encoded fiber gratings are the attractive candidate for high gamma radiation dose measurements in environment such as particle accelerators, fission reactors, food processing facilities, and ITER-like installations. The basics of fiber gratings, their operational designs, and devices based on fiber gratings have been described with advanced applications like high temperature sensing, strain measurements at cryogenic temperatures, and strain in nuclear environment. Finally, novel approaches are described for distributed hazardous gas monitoring for large areas such as airports, train stations, and reactor containment buildings

    Distributed Fiber Optic Gas Sensing for Harsh Environment

    Full text link

    Understanding the Radiation Effects on Fiber Optic Sensors

    Get PDF
    In this dissertation, the effects of radiation (gamma, neutron or mixed gamma and neutron) on optical fiber sensors are studied and new techniques for real-time measurement of radiation-induced macroscopic changes in optical fibers are presented. It is crucial among the research and development efforts in the nuclear energy field to conduct experiments in Advanced Test Reactor (ATR) to support lifetime extension, novel fuels and materials development, better fuel management, and enhanced safety of existing as well as future nuclear power plants (NPP). Due to their unparalleled and unique advantages over traditional sensors, optical fiber sensors are deemed potential candidates for their use in nuclear environments. However, optical fibers are susceptible to high levels of ionizing radiation emitted by fission reactors which are characterized by the highest levels of gamma dose, high flux of neutrons and potentially high temperatures depending on location in a reactor core. It is essential to accurately determine the information related to physical parameters such as temperature, pressure, and strain in nuclear environments for the safety of the existing and future NPPs. This dissertation starts with inverting a transmission mode long period grating (LPG) to reflection mode using a novel and cost-effective metal coating method since transmission mode LPG limits it applications in tight spaces or in nuclear fields. To understand the metal coating and metal coverage effects on the reflection spectrum of LPG, modeling work was performed, and it was validated by experimental work. We have shown that the sensitivity of LPGs to physical parameters in both transmission and reflection modes are almost the same. Next, we have modeled the radiation effects on different fiber optic sensors, proposed empirical models, and performed numerical analysis to understand the effects of nuclear environments on fiber optic sensors. We analyzed the real-time data from fiber Bragg gratings (FBGs) exposed to high neutron fluence and high temperature environments within the ATR at Idaho National Laboratory (INL). We have found that incoming radiation significantly drifts the characteristic signal of FBGs, leading to a temperature measurement error when FBGs are dedicated to temperature sensing. It is well known that neutron and gamma irradiation compacts silica optical fibers, resulting in a macroscopic change in the refractive index (RI) and geometric structure. The change in RI and linear compaction in a radiation environment is caused by three well-known mechanisms: (1) radiation induced attenuation (RIA), (2) radiation induced compaction (RIC), and (3) radiation induced emission (RIE). While RIA degrades the signal strength by creating different types of color centers in the silica fiber, RIC alters the density, and hence RI by displacing the host material atoms. However, Kramers-Kronig relation states that absorption, and hence the RIA, also modifies the RI of the silica fiber. Apart from RIA and RIC, other phenomena such as temperature, dose rate, stress relaxation, and dopant compositions exchange may change the RI. To overcome these problems, we have proposed an effective technique to measure the change in RI and compaction of optical fiber due to any specific phenomena the fiber is subjected to, including RIC, RIA, dopant diffusion, temperatures, dose, dose rate, etc. By knowing the individual contribution of RI and fiber length to the signal drift, it is possible to reduce the radiation induced signal drift in optical fiber sensors and provide accurate information regarding the temperature inside a radiation environment. Fission gas detection in nuclear environments is another important aspect that needs to be focused on. Pressure induced by fission gases during irradiation may lead to loss of coolant accident (LOCA), which can cause severe damage to the NPPs. We have modeled and fabricated optical fiber-based sensors to enable real-time monitoring of fission gases, which allows understanding the implications of fission gas release during an accident, important for safe and high performance

    Desenvolvimento e otimização de sensores em fibra ótica produzidos por laser de femtosegundo

    Get PDF
    In this work, optical fibre sensors were developed and optimized using a pulsed femtosecond laser. In addition to the inherent advantages of using femtosecond pulses, by emitting radiation in the NIR band, it was possible to modify the refractive index inside dielectric materials, namely silica and polymer optical fibres. Prior to the manufacturing of optical structures, a theoretical study was carried out on the peculiarities of writing-systems based on femtosecond lasers, as well as on the most common devices inscribed in optical fibres, namely Bragg gratings, long period gratings, and Fabry-Pérot interferometers. After assembling femtosecond NIR laser system, Bragg gratings, long period gratings, Fabry-Pérot interferometers, and interferometers based on the optical Vernier effect were manufactured using the direct-writing and phase mask methods. Using the micromachining setup, different structures were created in already existing optical fibre sensors, namely channels in hollow Fabry-Pérot cavities and laser etching around Bragg gratings inscribed in polymers optical fibres. The spectral responses of all devices were extensively characterized to, mainly, variations of temperature and strain, revealing unique sensitivity values, especially for the interferometers based on the optical Vernier effect (> 1 nm/°C and 0.1 nm/µε for temperature and strain, respectively). To demystify the thermal stability of fibre Bragg gratings, a theoretical and experimental study was carried out where several Bragg gratings were inscribed by different techniques, involving different lasers as well as silica and polymer optical fibres. The experimental results corroborated the theoretical predictions, where it was concluded that the gratings inscribed by the point-to-point method using a femtosecond laser have a greater thermal stability and lifetime, even when subjected to longer and higher temperature regimes. Finally, a bridge was stablished between the fundamental research developed during the manufacture of the elementary optical fibre sensors, and possible applications. Five different sensor concepts were demonstrated and tested, capable of detecting variations in magnetic fields, fluids refractive index, temperature, strain and humidity. As results, astonishing sensitivity values were attained, and several cross-sensitivity problems were mitigated, thus establishing the foundations for the development of new prototypes for the future.Neste trabalho foram desenvolvidos e otimizados sensores em fibra ótica através de um laser pulsado de femtosegundo. Para além das vantagens inerentes de usar pulsos da ordem do femtosegundo, ao emitir radiação na banda do infravermelho foi possível modificar o índice de refração no interior de materiais dielétricos, nomeadamente fibras óticas de sílica e polímero. Antes de proceder ao fabrico das estruturas óticas, foi realizado um estudo teórico sobre as peculiaridades dos sistemas de escrita baseados em lasers de femtosegundo, bem como sobre os principais dispositivos inscritos em fibra ótica, nomeadamente redes de Bragg, redes de período longo, e interferómetros de Fabry-Pérot. Após montado o sistema laser NIR de femtosegundo, através de inscrição direta e por máscara de fase foram fabricadas redes de Bragg, redes de período longo, interferómetros de Fabry-Pérot, e interferómetros baseados no efeito ótico de Vernier. Com a montagem de micromaquinação, diferentes estruturas foram criadas em sensores já existentes, nomeadamente buracos em cavidades Fabry-Pérot e remoção de material ao redor de redes de Bragg. As respostas espetrais de todos os dispositivos foram extensivamente caracterizadas, nomeadamente a variações de temperatura e tensão, revelando elevados valores de sensibilidades, especialmente para os interferómetros baseados no efeito ótico de Vernier (> 1 nm/°C e 0.1 nm/µε para temeprature e tensão, respetivamente). Para desmistificar a estabilidade térmica de redes de Bragg em fibra ótica, foi feito um estudo teórico e experimental onde várias redes de Bragg foram gravadas por diferentes técnicas, envolvendo diferentes lasers e fibras óticas de sílica e polímero. Os resultados experimentais corroboraram as previsões teóricas, onde se concluiu que as redes gravadas pelo método de ponto-a-ponto usando um laser de femtosegundo detêm uma maior estabilidade térmica e tempo de vida, mesmo quando submetidas a regimes longos de altas temperaturas. Por fim, foi feita a ponte entre a investigação fundamental desenvolvida durante o fabrico de dispositivos elementares em fibras óticas e possíveis aplicações. Foram demonstrados e testados cinco conceitos diferentes de sensores, capazes de detetar variações de campos magnéticos, índice de refração de fluídos, temperatura, tensão e humidade. Foram atingidos valores de sensibilidade surpreendentes, bem como mitigados problemas de sensibilidade cruzada, tendo sido assim estabelecidas as fundações para o desenvolvimento de novos protótipos para o futuro.Programa Doutoral em Engenharia Físic

    Time-Domain Fiber Loop Ringdown Sensor and Sensor Network

    Get PDF
    Optical fibers have been mostly used in fiber optic communications, imaging optics, sensing technology, etc. Fiber optic sensors have gained increasing attention for scientific and structural health monitoring (SHM) applications. In this study, fiber loop ringdown (FLRD) sensors were fabricated for scientific, SHM, and sensor networking applications. FLRD biosensors were fabricated for both bulk refractive index (RI)- and surface RI-based DNA sensing and one type of bacteria sensing. Furthermore, the effect of glucose oxidase (GOD) immobilization at the sensor head on sensor performance was evaluated for both glucose and synthetic urine solutions with glucose concentration between 0.1% and 10%. Detection sensitivities of the glucose sensors were achieved as low as 0.05%. For chemical sensing, heavy water, ranging from 97% to 10%, and several elemental solutions were monitored by using the FLRD chemical sensors. Bulk indexbased FLRD sensing showed that trace elements can be detected in deionized water. For physical sensing, water and cracking sensors were fabricated and embedded into concrete. A partially-etched single-mode fiber (SMF) was embedded into a concrete bar for water monitoring while a bare SMF without any treatment was directly embedded into another concrete bar for monitoring cracks. Furthermore, detection sensitivities of water and crack sensors were investigated as 10 ml water and 0.5 mm surface crack width, respectively Additionally fiber loop ringdowniber Bragg grating temperature sensors were developed in the laboratory; two sensor units for water, crack, and temperature sensing were deployed into a concrete cube in a US Department of Energy test bed (Miami, FL). Multi-sensor applications in a real concrete structure were accomplished by testing the six FLRD sensors. As a final stage, a sensor network was assembled by multiplexing two or three FLRD sensors in series and parallel. Additionally, two FLRD sensors were combined in series and parallel by using a 2×1 micro-electromechanical system optical switch to control sensors individually. For both configurations, contributions of each sensor to two or three coupled signals were simulated theoretically. Results show that numerous FLRD sensors can be connected in different configurations, and a sensor network can be built up for multiunction sensing applications

    Optical Sensors

    Get PDF
    This book is a compilation of works presenting recent developments and practical applications in optical sensor technology. It contains 10 chapters that encompass contributions from various individuals and research groups working in the area of optical sensing. It provides the reader with a broad overview and sampling of the innovative research on optical sensors in the world

    Fiber Optic Sensors for Extreme Environments

    Get PDF
    Optical fiber based sensors offer several important advantages over electronic sensors, including low manufacturing cost, miniature and flexible structures, immunities to electromagnetic fields, and the capability of distributive and multi-parameter sensing on a single fiber. Extreme harsh environments such as temperature >800°C or as low as a few Kelvin, present unique challenges and opportunities to fiber optic sensors. For example, hydrogen gas leak detection in cryogenic environment is critically important in the production and use of liquid hydrogen fuels. But the sensitivity of conventional Palladium (Pd) coated hydrogen sensors degrade rapidly when temperature decreases. Another example is the quick diminishing of conventional type-I gratings with temperature range beyond 500°C, which prevent the FBG implementation in numerous high temperature applications. The objective of this thesis is to explore new fiber sensing technologies that have significant performance enhancements, or were previously not possible in extreme environment applications. Optically heated fiber sensors were developed for cryogenic Hydrogen gas and liquid level sensing in environments as well as room temperature gas flow sensing. Regenerated gratings were developed for high temperature pressure sensing. Novel in-fiber sensing techniques such as Rayleigh and Raman scattering were also exploited for fully distributed sensing operations. These technologies and devices offer reliable and flexible sensing solutions extreme environments in energy, transportation and telecom industry

    Intensity based interrogation of optical fibre sensors for industrial automation and intrusion detection systems

    Get PDF
    In this study, the use of optical fibre sensors for intrusion detection and industrial automation systems has been demonstrated, with a particular focus on low cost, intensity-based, interrogation techniques. The use of optical fibre sensors for intrusion detection systems to secure residential, commercial, and industrial premises against potential security breaches has been extensively reviewed in this thesis. Fibre Bragg grating (FBG) sensing is one form of optical fibre sensing that has been underutilised in applications such as in-ground, in-fence, and window and door monitoring, and addressing that opportunity has been a major goal of this thesis. Both security and industrial sensor systems must include some centralised intelligence (electronic controller) and ideally both automation and security sensor systems would be controlled and monitored by the same centralised system. Optical fibre sensor systems that could be used for either application have been designed, developed, and tested in this study, and optoelectronic interfaces for integrating these sensors with electronic controllers have been demonstrated. The versatility of FBG sensors means that they are also ideal for certain mainstream industrial applications. Two novel transducers have been developed in this work; a highly sensitive low pressure FBG diaphragm transducer and a FBG load cell transducer. Both have been designed to allow interrogation of the optical signal could occur within the housing of the individual sensors themselves. This is achieved in a simple and low cost manner that enables the output of the transducers to be easily connected to standard electronic controllers, such as programmable logic controllers. Furthermore, some of the nonlinear characteristics of FBG sensors have been explored with the aim of developing transducers that are inherently decoupled from strain and temperature interference. One of the major advantages of optical fibre sensors is their ability to be both time division and wavelength division multiplexed. The intensity-based interrogation techniques used here complement this attribute and are a major consideration when developing the transducers and optoelectronic circuits. A time division multiplexing technique, using transmit-reflect detection and incorporating a dual bus, has also been developed. This system architecture enables all the different optical fibre transducers on the network to have the same Bragg wavelength and hence the number of spare replacement transducers required is minimal. Moreover, sensors can be replaced in an online control system without disrupting the network. In addition, by analysing both the transmitted and reflected signals, problems associated with optical power fluctuations are eliminated and the intensity of the sensor signals is increased through differential amplification. Overall, the research addresses the limitations of conventional electrical sensors, such as susceptibility to corrosive damage in wet and corrosive environments, and risk of causing an explosion in hazardous environments, as well as the limitations of current stand-alone optical fibre sensor systems. This thesis supports more alert, reliable, affordable, and coordinated, control and monitoring systems in an on-line environment

    Femtosecond Laser Micromachining of Advanced Fiber Optic Sensors and Devices

    Get PDF
    Research and development in photonic micro/nano structures functioned as sensors and devices have experienced significant growth in recent years, fueled by their broad applications in the fields of physical, chemical and biological quantities. Compared with conventional sensors with bulky assemblies, recent process in femtosecond (fs) laser three-dimensional (3D) micro- and even nano-scale micromachining technique has been proven an effective and flexible way for one-step fabrication of assembly-free micro devices and structures in various transparent materials, such as fused silica and single crystal sapphire materials. When used for fabrication, fs laser has many unique characteristics, such as negligible cracks, minimal heat-affected-zone, low recast, high precision, and the capability of embedded 3D fabrication, compared with conventional long pulse lasers. The merits of this advanced manufacturing technique enable the unique opportunity to fabricate integrated sensors with improved robustness, enriched functionality, enhanced intelligence, and unprecedented performance. Recently, fiber optic sensors have been widely used for energy, defense, environmental, biomedical and industry sensing applications. In addition to the well-known advantages of miniaturized in size, high sensitivity, simple to fabricate, immunity to electromagnetic interference (EMI) and resistance to corrosion, all-optical fiber sensors are becoming more and more desirable when designed with characteristics of assembly free and operation in the reflection configuration. In particular, all-optical fiber sensor is a good candidate to address the monitoring needs within extreme environment conditions, such as high temperature, high pressure, toxic/corrosive/erosive atmosphere, and large strain/stress. In addition, assembly-free, advanced fiber optic sensors and devices are also needed in optofluidic systems for chemical/biomedical sensing applications and polarization manipulation in optical systems. Different fs laser micromachining techniques were investigated for different purposes, such as fs laser direct ablating, fs laser irradiation with chemical etching (FLICE) and laser induced stresses. A series of high performance assembly-free, all-optical fiber sensor probes operated in a reflection configuration were proposed and fabricated. Meanwhile, several significant sensing measurements (e.g., high temperature, high pressure, refractive index variation, and molecule identification) of the proposed sensors were demonstrated in this dissertation as well. In addition to the probe based fiber optic sensors, stress induced birefringence was also created in the commercial optical fibers using fs laser induced stresses technique, resulting in several advanced polarization dependent devices, including a fiber inline quarter waveplate and a fiber inline polarizer based on the long period fiber grating (LPFG) structure
    corecore