32,531 research outputs found

    Signal processing for a laser-Doppler blood perfusion meter

    Get PDF
    Two signal processing methods for laser-Dopper perfusion velocimetry are presented. The methods are based on the calculation of the moments of the frequency power spectrum. The first uses Vω-filtering (ω is the frequency) with analogous electronics, the second uses signal autocorrelation with digital electronics. Comparison is made with a third instrument: a spectrum analyzer coupled to a computer, using Fourier transform tecniques. The performance of these setups (sensitivity, limit sensitivity and accuracy) are investigated. We propose a calibration standard for signal processors to be used for blood perfusion measurements. The analogous instrument proved to be the cheapest but the digital instrument had the best performance

    The Measurement of AM noise of Oscillators

    Full text link
    The close-in AM noise is often neglected, under the assumption that it is a minor problem as compared to phase noise. With the progress of technology and of experimental science, this assumption is no longer true. Yet, information in the literature is scarce or absent. This report describes the measurement of the AM noise of rf/microwave sources in terms of Salpha(f), i.e., the power spectrum density of the fractional amplitude fluctuation alpha. The proposed schemes make use of commercial power detectors based on Schottky and tunnel diodes, in single-channel and correlation configuration. There follow the analysis of the front-end amplifier at the detector output, the analysis of the methods for the measurement of the power-detector noise, and a digression about the calibration procedures. The measurement methods are extended to the relative intensity noise (RIN) of optical beams, and to the AM noise of the rf/microwave modulation in photonic systems. Some rf/microwave synthesizers and oscillators have been measured, using correlation and moderate averaging. As an example, the flicker noise of a low-noise quartz oscillator (Wenzel 501-04623E) is Salpha = 1.15E-13/f, which is equivalent to an Allan deviation of sigma_alpha = 4E-7. The measurement systems described exhibit the world-record lowest background noise.Comment: 39 pages, 22 figures, 8 tables, 21 references, list of symbol

    Feasibility study of the application of existing techniques to remotely monitor hydrochloric acid in the atmosphere

    Get PDF
    A critical evaluation of existing optical remote sensors for HCl vapor detection in solid propellant rocket plumes is presented. The P branch of the fundamental vibration-rotation band was selected as the most promising spectral feature to sense. A computation of transmittance for HCl vapor, an estimation of interferent spectra, the application of these spectra to computer modelled remote sensors, and a trade-off study for instrument recommendation are also included

    A correlation noise spectrometer for flicker noise measurement in graphene samples

    Get PDF
    We present a high-resolution digital correlation spectrum analyzer for the measurement of low frequency resistance fluctuations in graphene samples. The system exploits the cross-correlation method to reject the amplifiers' noise. The graphene sample is excited with a low-noise DC current. The output voltage is fed to two two-stage low-noise amplifiers connected in parallel; the DC signal component is filtered by a high-pass filter with a cutoff frequency of 34 mHz. The amplified signals are digitized by a two-channel synchronous ADC board; the cross-periodogram, which rejects uncorrelated amplifiers' noise components, is computed in real time. As a practical example, we measured the noise cross-spectrum of graphene samples in the frequency range from 0.153 Hz to 10 kHz, both in two- and four-wire configurations, and for different bias currents. We report here the measurement setup, the data analysis and the error sources

    Nano-optomechanical measurement in the photon counting regime

    Full text link
    Optically measuring in the photon counting regime is a recurrent challenge in modern physics and a guarantee to develop weakly invasive probes. Here we investigate this idea on a hybrid nano-optomechanical system composed of a nanowire hybridized to a single Nitrogen-Vacancy (NV) defect. The vibrations of the nanoresonator grant a spatial degree of freedom to the quantum emitter and the photon emission event can now vary in space and time. We investigate how the nanomotion is encoded on the detected photon statistics and explore their spatio-temporal correlation properties. This allows a quantitative measurement of the vibrations of the nanomechanical oscillator at unprecedentedly low light intensities in the photon counting regime when less than one photon is detected per oscillation period, where standard detectors are dark-noise-limited. These results have implications for probing weakly interacting nanoresonators, for low temperature experiments and for investigating single moving markers

    Validation of a new spectrometer for noninvasive measurement of cardiac output

    Get PDF
    Acetylene is a blood-soluble gas and for many years its uptake rate during rebreathing tests has been used to calculate the flow rate of blood through the lungs (normally equal to cardiac output) as well as the volume of lung tissue. A new, portable, noninvasive instrument for cardiac output determination using the acetylene uptake method is described. The analyzer relies on nondispersive IR absorption spectroscopy as its principle of operation and is configured for extractive (side-stream) sampling. The instrument affords exceptionally fast (30 ms, 10%–90%, 90%–10%, at 500 mL min–1 flow rates), interference-free, simultaneous measurement of acetylene, sulfur hexafluoride (an insoluble reference gas used in the cardiac output calculation), and carbon dioxide (to determine alveolar ventilation), with good (typically ±2% full-scale) signal-to-noise ratios. Comparison tests with a mass spectrometer using serially diluted calibration gas samples gave excellent (R2>0.99) correlation for all three gases, validating the IR system's linearity and accuracy. A similar level of agreement between the devices also was observed during human subject C2H2 uptake tests (at rest and under incremental levels of exercise), with the instruments sampling a common extracted gas stream. Cardiac output measurements by both instruments were statistically equivalent from rest to 90% of maximal oxygen consumption; the physiological validity of the measurements was confirmed by the expected linear relationship between cardiac output and oxygen consumption, with both the slope and intercept in the published range. These results indicate that the portable, low-cost, rugged prototype analyzer discussed here is suitable for measuring cardiac output noninvasively in a point-of-care setting

    Applications of the optical fiber to the generation and to the measurement of low-phase-noise microwave signals

    Full text link
    The optical fiber used as a microwave delay line exhibits high stability and low noise and makes accessible a long delay (>100 microseconds) in a wide bandwidth (about 40 GHz, limited by the optronic components). Hence, it finds applications as the frequency reference in microwave oscillators and as the reference discriminator for the measurement of phase noise. The fiber is suitable to measure the oscillator stability with a sensitivity of parts in 1E-12. Enhanced sensitivity is obtained with two independent delay lines, after correlating and averaging. Short-term stability of parts in 1E-12 is achieved inserting the delay line in an oscillator. The frequency can be set in steps multiple of the inverse delay, which is in the 10-100 kHz region. This article adds to the available references a considerable amount of engineering and practical knowledge, the understanding of 1/f noise, calibration, the analysis of the cross-spectrum technique to reduce the instrument background, the phase-noise model of the oscillator, and the experimental test of the oscillator model.Comment: 23 pages, 13 figures, 41 reference
    • …
    corecore