4 research outputs found

    To what extent can a sediment yield model be trusted? A case study from the passaĂșna catchment, brazil

    Get PDF
    Soil degradation and reservoir siltation are two of the major actual environmental, scientific, and engineering challenges. With the actual trend of world population increase, further pressure is expected on both water and soil systems around the world. Soil degradation and reservoir siltation are, however, strongly interlinked with the erosion processes that take place in the hydrological catchments, as both are consequences of these processes. Due to the spatial scale and duration of erosion events, the installation and operation of monitoring systems are rather cost- and time-consuming. Modeling is a feasible alternative for assessing the soil loss adequately. In this study, the possibility of adopting reservoir sediment stock as a validation measure for a monthly time-step sediment input model was investigated. For the assessment of sediment stock in the reservoir, the commercial free-fall penetrometer GraviProbe (GP) was used, while the calculation of sediment yield was calculated by combining a revised universal soil loss equation (RUSLE)-based model with a sediment delivery ratio model based on the connectivity approach. For the RUSLE factors, a combination of remote sensing, literature review, and conventional sampling was used. For calculation of the C Factor, satellite imagery from the Sentinel-2 platform was used. The C Factor was derived from an empirical approach by combining the normalized difference vegetation index (NDVI), the degree of soil sealing, and land-use/land-cover data. The key research objective of this study was to examine to what extent a reservoir can be used to validate a long-term erosion model, and to find out the limiting factors in this regard. Another focus was to assess the potential improvements in erosion modeling from the use of Sentinel-2 data. The use of such data showed good potential to improve the overall spatial and temporal performance of the model and also dictated further opportunities for using such types of model as reliable decision support systems for sustainable catchment management and reservoir protection measures

    Soil erosion modelling as a tool for future land management and conservation planning

    Get PDF
    Maintaining future agricultural productivity and ensuring soil security is of global concern and requires evidence-based management practices. Moreover, understanding where and when land is at risk of erosion is a fundamental step to combatting future soil loss and reach Land Degradation Neutrality (LDN). However, this is a difficult task because of the high spatial and temporal variability of the controlling factors involved. Therefore, tools investigating the impact and frequency of extreme erosive events are crucial for land managers and policymakers to apply corrective measures for better erosion management in the future. While the utility of using wind and water erosion models for management is well established, there is a paucity of work on the impact of climate change and extreme environmental conditions (e.g. wildfires) on soil erosion by wind and water simultaneously. Both erosion types are controlled by different environmental variable that vary highly in space and time. Therefore, the overarching aim of this study was to develop a joint wind-water erosion modelling method and demonstrate the utility of this approach to identify (1) the spatio-temporal variability of extreme erosion events in the South Australian agricultural zone (Australia) and (2) assess the likely increase of this variability in the face of climate change and the recurrence of wildfires. To fulfil the aim of the research project, we adapted two state-of-the-art wind and water (hillslope) erosion models to integrate modern high-resolution datasets for spatial and temporal analysis of erosion. The adaptation of these models to local conditions and the use of high-resolution datasets was essential to ensure reliable erosion assessment. First, we applied these models separately in the Eyre Peninsula and Mid-North agricultural regions. We evaluated the spatio-temporal variability of extreme erosion events between 2001 and 2017 and described the complex interactions between each erosional process and their influencing factors (e.g. soil types, climate conditions, and vegetation cover). Hillslope erosion was very low for most of the Eyre Peninsula; however, a large proportion of the central Mid-North region frequently recorded severe erosion (> 0.022 t ha-1) two to three months per year, for most of the years in the time-series. The most severe erosion events were primarily driven by topography, low ground cover ( 500 MJ mm ha-1 h-1). Average annual wind erosion was very low and comparable in the two regions. Nonetheless, most of the west coast of the Eyre Peninsula frequently registered severe erosion (> 0.000945 t ha-1 or 0.945 kg ha-1) two to three months per year, for most of the years. The most severe erosion events were largely driven by the soil type (sandy soils), recurring low ground cover ( 68 km h-1). We identified that erosion severity was low for the vast majority of the study area, while 4% and 9% of the total area suffered severe erosion by water and wind respectively, demonstrating an extreme spatial and temporal skewness of soil erosion processes. Then we combined the modelling outputs from the wind and water erosion models and tested the models’ response to major wildfire events. This research demonstrated how erosion modelling could be used to predict the impact of severe wildfire events on soil erosion. The two models satisfactorily captured the spatial and temporal variability of post-fire erosion. However, a very small fraction of the region (0.7%) was severely impacted by both wind and water erosion. We observed that soil erosion increased immediately after the wildfires or within the first six months for the ten fire-affected regions. For three of the wildfire events, the models showed an increase in wind and water erosion in consecutive months or at the same time. These results highlighted the importance to consider wind and water erosion simultaneously for post-fire erosion assessment in dryland agricultural regions. Finally, we had the rare opportunity to assess the impact of a catastrophic wildfire event on wind erosion in an agricultural landscape by examining the influence of unburnt stubble patches on adjacent burnt or bare plots using a spatio-temporal sampling design. The field study allowed a quantitative assessment of spatial and temporal patterns of wind erosion and sediment transport after a catastrophic wildfire event. It showed very high levels of spatial variability of erosion processes between burnt and bare patches and demonstrated how measuring field-scale sediment transport could complement fine-scale experimental studies to assess environmental processes at the field scale. This research highlights the utility of erosion models to inform corrective measures for future land management. We have implemented tools that allow a realistic assessment of the influence of climate change and extreme environmental conditions scenarios on soil erosion for a wide range of land cover over large regions. Here, the models enabled the identification of the relative post-fire wind or water erosion risk in dryland agricultural landscapes, making them particularly useful for land management under future uncertainty. Spatial patterns compared well with previous modelling approaches and underpinned the benefit of erosion models to assess spatial differences in erosion risk and evaluate corrective measures at the regional scale. However, modelled soil erosion magnitudes strongly depend on how the influence of soils is implemented in the models, making it difficult to set absolute quantitative soil loss targets for land management. The thesis has provided a proof of concept of the approach for South Australia. However, all input data can be freely sourced Australia-wide and similar dataset are available globally.Thesis (Ph.D.) -- University of Adelaide, School of Biological Sciences, 202

    Integrated Sediment Yield and Stock Assessment for the PassaĂșna Reservoir, Brazil

    Get PDF
    Wasser und Energie sind die beiden SchlĂŒsselaspekte der wirtschaftlichen und sozialen Entwicklung einer Region. Stauhaltungen sind wichtige Strukturen fĂŒr die Wasserversorgung, BewĂ€sserung, Bergbau sowie die Energieversorgung durch Wasserkraft. Die Eingriffe des Menschen in die Flusssysteme durch den Bau von Stauseen sind jedoch mit mehreren Nachteilen verbunden. GrundsĂ€tzlich wird hierdurch ein Ökosystem unterbrochen. Die Stauseen, die die Störung eines Flusskontinuums verursachen, leiden auch daran, dass sie eine begrenzte Lebensdauer haben. FlĂŒsse sind dynamische Systeme, die große Mengen organischen und mineralischen Materials von den Bergen bis zum Meer transportieren. Wenn sie aufgestaut werden, wird ein Stausee zur Senke von Partikeln. Eine große wissenschaftliche und ingenieurwissenschaftliche Herausforderung bei der Planung von Sanierungsmaßnahmen ist die Bewertung der Volumina, die das Reservoir in einer bestimmten Zeit erreichen. Das Sedimentvolumen und die entsprechende Masse kann entweder durch Monitoring und Modellierung des Sedimenteintrags aus dem hydrologischen Einzugsgebiet oder durch Messungen des Sediments im Stausee bestimmt werden. Im ersten Fall erschwert die rĂ€umliche und zeitliche Skala, in der die Sedimentmobilisierung in dem Einzugsgebiet stattfindet, die Ableitung zuverlĂ€ssiger Quantifizierung des Sedimenteintrags. Im zweiten Fall trĂ€gt die Unterwasserumgebung des Stausees dazu bei, dass oft keine verlĂ€sslichen Daten zur Quantifizierung von zurĂŒckgehaltenen Sedimenten vorliegen. Ziel dieser Arbeit ist eine bessere Beurteilung sowohl der SedimenteintrĂ€ge als auch der Sedimentablagerungen. Der erste Teil dieser Arbeit beschĂ€ftigt sich mit der Quantifizierung von Erosion und Sedimenteintrag aus einem Einzugsgebiet mittels Modellierung. Das rasante Bevölkerungswachstum in vielen Regionen hat intensive Landnutzungs- und Landbede-ckungsĂ€nderungen zur Folge. Dies impliziert die Verwendung dynamischerer Modelle zur Abbildung der realen Bedingungen. Die technologischen Fortschritte in der Satellitenerkundung ermöglichen es, die rĂ€umliche und zeitliche Auflösung der Modelle zu verbessern, wobei die Auswirkungen der Integration dieser Daten auf die Modellergebnisse noch nicht analysiert sind. Um diese Verbesserungen beurteilen zu können, wurden die EintrĂ€ge aus dem PassaĂșna Einzugsgebiet im SĂŒdosten Brasiliens untersucht. FĂŒr dieses Einzugsgebiet war es möglich, die Dynamik des Bodenverlusts und des Sedimenteintrags in einer monatlichen Auflösung zu modellieren und zu bewerten. In andere Worte, durch die Integration von frei verfĂŒgbaren Sentinel-2 Satellitendaten konnte die zeitliche und rĂ€umliche Auflösung im Vergleich zu den bisherigen AnsĂ€tzen reduziert werden. Neben der Eintragsmodellierung wurde eine Quantifizierung der Sedimente im PassaĂșna Stausee durchgefĂŒhrt. Es wurden verschiedene Fernerkundungs- sowie konventionelle und Proxy-Sediment-Probenahmeverfahren integriert, um die Genauigkeit der Sedimentbestimmung zu optimieren. Am Ende konnte eine genaue AbschĂ€tzung des Sedimentvolumens und der -dichte im Reservoir erreicht werden. DarĂŒber hinaus wurde ein Leitdiagramm zur Auswahl der besten Sedimentnachweismethode in AbhĂ€ngigkeit der Sedimenteigenschaften erarbeitet. Die Ergebnisse beider Abschnitte sind eng miteinander verbunden, da der Sedimenteintrag aus einem Wassereinzugsgebiet auch die Sedimentmenge ist, die in einem Reservoir wie PassaĂșna gefunden werden sollte, wo der Sedimentationsvermögen annĂ€hernd 100 % betrĂ€gt. In diesem Fall unterschĂ€tzt die Modellierung um ca. 50 % im Vergleich zum Sedimentbestand im Reservoir. Die wichtigsten Faktoren, die zu dieser Diskrepanz beitragen, sind die NichtberĂŒcksichtigung der Rinnen-Erosion im Sediment-Eingangsmodell, Fehler im Berechnungsprozess, die Eigenproduktion des Reservoirs und Fehler bei der Sedimentquantifizierung. Die wichtigsten Erkenntnisse, die sich aus den Ergebnissen dieser Arbeit ergeben, sind die erfolgreiche Integration von satelliten-basierten Eingangsparametern in einen Modellierungsansatz zur Verbesserung der SedimenteintragsabschĂ€tzung und die Kombination mehrerer Methoden zur exakten Beurteilung der Stauseeverlandung. Die Ergebnisse dieser Dissertation können dazu beitragen, die LĂŒcke zwischen den beiden Aspekten des Sedimenthaushalts zu schließen, indem zunĂ€chst eine exakte Bewertung des Sedimentbestands der Reservoirs vorgenommen wird und zweitens die Diskrepanz der einzelnen beteiligten Faktoren fĂŒr eine Fallstudie quantifiziert wird
    corecore