132 research outputs found

    Advanced study of coastal zone oceanographic requirements for ERTS E and F

    Get PDF
    Earth Resources Technology Satellites E and F orbits and remote sensor instruments for coastal oceanographic data collectio

    Assessment and Analysis of QuikSCAT and COAMPS Model Vector Wind Products for the Gulf of Mexico: A Long-Term and Hurricane Perspective

    Get PDF
    Global weather changes have become a matter of grave concern in hurricane prone areas as intensities of hurricanes are observed to be increasing every year, necessitating improved monitoring capabilities. NASA’s QuikSCAT satellite sensor has provided significant support in analyzing and forecasting winds for the past 8 years. In this study, the performance of QuikSCAT products, including JPL’s latest L2B 12.5km swath winds, was evaluated against buoy-measured winds in the Gulf of Mexico. The long-term study period was 1/2005 – 2/2007. The Coupled Ocean/Atmospheric Mesoscale Prediction System (COAMPS) was also assessed. The regression analyses showed very good results for QuikSCAT products, with the best results obtained from L2B winds. R2 values for moderate wind speeds were 0.75 and 0.89, 0.88 and 0.93, 0.66 and 0.77 for speed and direction and for L3, L2B and COAMPS respectively. The National Weather Product (NWP) model winds provided in the L2B dataset were also studied. Hurricanes that took place from 2002 to 2006 were studied individually to obtain regressions of QuikSCAT and COAMPS versus buoys for those events. The correlations were very high indicating that QuikSCAT is at par with buoys during hurricanes. These measurements were compared with the NHC best track analyses to determine the accuracy and found to be almost half those obtained by NHC, possibly due to rain contamination. Sea Surface Height Anomaly (SSHA) measurements by Jason-1 and sea surface temperature (SST) measurements by the Moderate Resolution Imaging Spectroradiometer (MODIS) Aqua and GOES-12 (Geostationary) were compared with wind fields during hurricanes to study the effects of the Loop Current and Warm Core Rings on the intensification of the hurricanes. A preliminary study was conducted in which the regions of enhanced wind speeds were observed by studying the longitudinal and latitudinal transects across the hurricane for two hurricanes, namely Hurricanes Ivan and Katrina. This study would act as a precursor to further analysis of the radius of maximum wind and critical wind radii

    Zero-gravity atmospheric Cloud Physics Experiment Laboratory; Programmatics report

    Get PDF
    The programmatics effort included comprehensive analyses in four major areas: (1) work breakdown structure, (2) schedules, (3) costs, and (4) supporting research and technology. These analyses are discussed in detail in the following sections which identify and define the laboratory project development schedule, cost estimates, funding distributions and supporting research and technology requirements. All programmatics analyses are correlated among themselves and with the technical analyses by means of the work breakdown structure which serves as a common framework for program definition. In addition, the programmatic analyses reflect the results of analyses and plans for reliability, safety, test, and maintenance and refurbishment

     Ocean Remote Sensing with Synthetic Aperture Radar

    Get PDF
    The ocean covers approximately 71% of the Earth’s surface, 90% of the biosphere and contains 97% of Earth’s water. The Synthetic Aperture Radar (SAR) can image the ocean surface in all weather conditions and day or night. SAR remote sensing on ocean and coastal monitoring has become a research hotspot in geoscience and remote sensing. This book—Progress in SAR Oceanography—provides an update of the current state of the science on ocean remote sensing with SAR. Overall, the book presents a variety of marine applications, such as, oceanic surface and internal waves, wind, bathymetry, oil spill, coastline and intertidal zone classification, ship and other man-made objects’ detection, as well as remotely sensed data assimilation. The book is aimed at a wide audience, ranging from graduate students, university teachers and working scientists to policy makers and managers. Efforts have been made to highlight general principles as well as the state-of-the-art technologies in the field of SAR Oceanography

    Wind Field Retrieval from Satellite Radar Systems

    Get PDF
    Wind observations are essential for determining the atmospheric flow. In particular, sea-surface wind observations are very useful for many meteorological and oceanographic applications. In this respect, most of the satellite remote-sensing radar systems can provide sea-surface wind information. This thesis reviews the current wind retrieval procedures for such systems, identifies the most significant unresolved problems, and proposes new methods to overcome such problems.In order to invert the geophysical model function (GMF), which relates the radar backscatter measurement with the wind speed and direction (unknowns), two independent measurements over the same scene (wind cell) are at least needed. The degree of independence of such measurements is given by the azimuth (view) angle separation among them. This thesis is focused on improving the wind retrieval for determined systems (two or more measurements) with poor azimuth diversity and for underdetermined systems (one single measurement). For such purpose, observations from two different radar systems, i.e., SeaWinds and SAR (Synthetic Aperture Radar), are used.The wind retrieval methods proposed in this book for determined (Multiple Solution Scheme, denoted MSS) and underdetermined (SAR Wind Retrieval Algorithm, denoted SWRA) systems are based on Bayesian methodology, that is, on maximizing the probability of obtaining the "true" wind given the radar measurements and the a priori wind information (often provided by numerical weather prediction models), assuming that all wind information sources contain errors. In contrast with the standard procedure for determined systems, the MSS fully uses the information obtained from inversion, which turns out to positively impact the wind retrieval when poor azimuth diversity. On the other hand, in contrast with the various algorithms used nowadays to resolve the wind vector for underdetermined systems, the SWRA assumes not only that the system can not be solved without additional information (underdetermination assumption) but also that both the algorithms and the additional information (which are combined to retrieved the wind vector) contain errors and these should be well characterized. The MSS and the SWRA give promising results, improving the wind retrieval quality as compared to the methods used up to now.Finally, a generic quality control is proposed for determined systems. In general, high-quality retrieved wind fields can be obtained from scatterometer (determined systems) measurements. However, geophysical conditions other than wind (e.g., rain, confused sea state or sea ice) can distort the radar signal and, in turn, substantially decrease the wind retrieval quality. The quality control method uses the inversion residual (which is sensitive to inconsistencies between observations and the geophysical model function that are mainly produced when conditions other than wind dominate the radar backscatter signal) to detect and reject the poor-quality retrievals. The method gives good results, minimizing the rejection of good-quality data and maximizing the rejection of poor-quality data, including rain contamination

    Wind Field Retrieval from Satellite Radar Systems

    Get PDF
    [eng] Wind observations are essential for determining the atmospheric flow. In particular, sea-surface wind observations are very useful for many meteorological and oceanographic applications. In this respect, most of the satellite remote-sensing radar systems can provide sea-surface wind information. This thesis reviews the current wind retrieval procedures for such systems, identifies the most significant unresolved problems, and proposes new methods to overcome such problems. In order to invert the geophysical model function (GMF), which relates the radar backscatter measurement with the wind speed and direction (unknowns), two independent measurements over the same scene (wind cell) are at least needed. The degree of independence of such measurements is given by the azimuth (view) angle separation among them. This thesis is focused on improving the wind retrieval for determined systems (two or more measurements) with poor azimuth diversity and for underdetermined systems (one single measurement). For such purpose, observations from two different radar systems, i.e., SeaWinds and SAR (Synthetic Aperture Radar), are used. The wind retrieval methods proposed in this book for determined (Multiple Solution Scheme, denoted MSS) and underdetermined (SAR Wind Retrieval Algorithm, denoted SWRA) systems are based on Bayesian methodology, that is, on maximizing the probability of obtaining the "true" wind given the radar measurements and the a priori wind information (often provided by numerical weather prediction models), assuming that all wind information sources contain errors. In contrast with the standard procedure for determined systems, the MSS fully uses the information obtained from inversion, which turns out to positively impact the wind retrieval when poor azimuth diversity. On the other hand, in contrast with the various algorithms used nowadays to resolve the wind vector for underdetermined systems, the SWRA assumes not only that the system can not be solved without additional information (underdetermination assumption) but also that both the algorithms and the additional information (which are combined to retrieved the wind vector) contain errors and these should be well characterized. The MSS and the SWRA give promising results, improving the wind retrieval quality as compared to the methods used up to now. Finally, a generic quality control is proposed for determined systems. In general, high-quality retrieved wind fields can be obtained from scatterometer (determined systems) measurements. However, geophysical conditions other than wind (e.g., rain, confused sea state or sea ice) can distort the radar signal and, in turn, substantially decrease the wind retrieval quality. The quality control method uses the inversion residual (which is sensitive to inconsistencies between observations and the geophysical model function that are mainly produced when conditions other than wind dominate the radar backscatter signal) to detect and reject the poor-quality retrievals. The method gives good results, minimizing the rejection of good-quality data and maximizing the rejection of poor-quality data, including rain contamination

    Space-Based Remote Sensing of the Earth: A Report to the Congress

    Get PDF
    The commercialization of the LANDSAT Satellites, remote sensing research and development as applied to the Earth and its atmosphere as studied by NASA and NOAA is presented. Major gaps in the knowledge of the Earth and its atmosphere are identified and a series of space based measurement objectives are derived. The near-term space observations programs of the United States and other countries are detailed. The start is presented of the planning process to develop an integrated national program for research and development in Earth remote sensing for the remainder of this century and the many existing and proposed satellite and sensor systems that the program may include are described

    Earth resources: A continuing bibliography with indexes (issue 61)

    Get PDF
    This bibliography lists 606 reports, articles, and other documents introduced into the NASA scientific and technical information system between January 1 and March 31, 1989. Emphasis is placed on the use of remote sensing and geophysical instrumentation in spacecraft and aircraft to survey and inventory natural resources and urban areas. Subject matter is grouped according to agriculture and forestry, environmental changes and cultural resources, geodesy and cartography, geology and mineral resources, oceanography and marine resources, hydrology and water management, data processing and distribution systems, and instrumentation and sensors, and economic analysis

    Aeronautical engineering: A cumulative index to a continuing bibliography

    Get PDF
    This bibliography is a cumulative index to the abstracts contained in NASA SP-7037(210) through NASA SP-7037(221) of Aeronautical Engineering: A Continuing Bibliography. NASA SP-7037 and its supplements have been compiled through the cooperative efforts of the American Institute of Aeronautics and Astronautics (AIAA) and the National Aeronautics and Space Administration (NASA). This cumulative index includes subject, personal author, corporate source, foreign technology, contract number, report number, and accession number indexes

    Earth resources: A continuing bibliography with indexes (issue 58)

    Get PDF
    This bibliography lists 500 reports, articles, and other documents introduced into the NASA scientific and technical information system between April 1 and June 30, 1988. Emphasis is placed on the use of remote sensing and geophysical instrumentation in spacecraft and aircraft to survey and inventory natural resources and urban areas. Subject matter is grouped according to agriculture and forestry, environmental changes and cultural resources, geodesy and cartography, geology and mineral resources, hydrology and water management, data processing and distribution systems, instrumentation and sensors, and economic analysis
    • …
    corecore