285 research outputs found

    Minutiae-based Fingerprint Extraction and Recognition

    Get PDF

    Improving Fingerprint Verification Using Minutiae Triplets

    Get PDF
    Improving fingerprint matching algorithms is an active and important research area in fingerprint recognition. Algorithms based on minutia triplets, an important matcher family, present some drawbacks that impact their accuracy, such as dependency to the order of minutiae in the feature, insensitivity to the reflection of minutiae triplets, and insensitivity to the directions of the minutiae relative to the sides of the triangle. To alleviate these drawbacks, we introduce in this paper a novel fingerprint matching algorithm, named M3gl. This algorithm contains three components: a new feature representation containing clockwise-arranged minutiae without a central minutia, a new similarity measure that shifts the triplets to find the best minutiae correspondence, and a global matching procedure that selects the alignment by maximizing the amount of global matching minutiae. To make M3gl faster, it includes some optimizations to discard non-matching minutia triplets without comparing the whole representation. In comparison with six verification algorithms, M3gl achieves the highest accuracy in the lowest matching time, using FVC2002 and FVC2004 databases

    A comparative study on quality assessment of high resolution fingerprint images

    Full text link
    2010 17th IEEE International Conference on Image Processing, ICIP 2010, Hong Kong, 26-29 September 2010High resolution fingerprint images have been increasingly used in fingerprint recognition. They can provide more fine features (e.g. pores) than standard fingerprint images to improve the recognition accuracy. It is however still an open issue whether or not existing quality assessment methods are suitable for high resolution fingerprint images. This paper compares some typical quality indexes by analyzing the correlation between them and their prediction ability on minutia-based and pore-based high resolution fingerprint recognition accuracy. Experimental results show that the indexes based on ridge orientation are more effective for high resolution fingerprint recognition systems.Department of ComputingRefereed conference pape

    An overview of touchless 2D fingerprint recognition

    Get PDF
    Touchless fingerprint recognition represents a rapidly growing field of research which has been studied for more than a decade. Through a touchless acquisition process, many issues of touch-based systems are circumvented, e.g., the presence of latent fingerprints or distortions caused by pressing fingers on a sensor surface. However, touchless fingerprint recognition systems reveal new challenges. In particular, a reliable detection and focusing of a presented finger as well as an appropriate preprocessing of the acquired finger image represent the most crucial tasks. Also, further issues, e.g., interoperability between touchless and touch-based fingerprints or presentation attack detection, are currently investigated by different research groups. Many works have been proposed so far to put touchless fingerprint recognition into practice. Published approaches range from self identification scenarios with commodity devices, e.g., smartphones, to high performance on-the-move deployments paving the way for new fingerprint recognition application scenarios.This work summarizes the state-of-the-art in the field of touchless 2D fingerprint recognition at each stage of the recognition process. Additionally, technical considerations and trade-offs of the presented methods are discussed along with open issues and challenges. An overview of available research resources completes the work

    Biometrics

    Get PDF
    Biometrics uses methods for unique recognition of humans based upon one or more intrinsic physical or behavioral traits. In computer science, particularly, biometrics is used as a form of identity access management and access control. It is also used to identify individuals in groups that are under surveillance. The book consists of 13 chapters, each focusing on a certain aspect of the problem. The book chapters are divided into three sections: physical biometrics, behavioral biometrics and medical biometrics. The key objective of the book is to provide comprehensive reference and text on human authentication and people identity verification from both physiological, behavioural and other points of view. It aims to publish new insights into current innovations in computer systems and technology for biometrics development and its applications. The book was reviewed by the editor Dr. Jucheng Yang, and many of the guest editors, such as Dr. Girija Chetty, Dr. Norman Poh, Dr. Loris Nanni, Dr. Jianjiang Feng, Dr. Dongsun Park, Dr. Sook Yoon and so on, who also made a significant contribution to the book

    Fingerprint Recognition: A Histogram Analysis Based Fuzzy C-Means Multilevel Structural Approach

    Get PDF
    In order to fight identity fraud, the use of a reliable personal identifier has become a necessity. Fingerprints are considered one of the best biometric measurements and are used as a universal personal identifier. There are two main phases in the recognition of personal identity using fingerprints: 1) extraction of suitable features of fingerprints, and 2) fingerprint matching making use of the extracted features to find the correspondence and similarity between the fingerprint images. Use of global features in minutia-based fingerprint recognition schemes enhances their recognition capability but at the expense of a substantially increased complexity. The recognition accuracies of most of the fingerprint recognition schemes, which rely on some sort of crisp clustering of the fingerprint features, are adversely affected due to the problems associated with the behavioral and anatomical characteristics of the fingerprints. The objective of this research is to develop efficient and cost-effective techniques for fingerprint recognition, that can meet the challenges arising from using both the local and global features of the fingerprints as well as effectively deal with the problems resulting from the crisp clustering of the fingerprint features. To this end, the structural information of local and global features of fingerprints are used for their decomposition, representation and matching in a multilevel hierarchical framework. The problems associated with the crisp clustering of the fingerprint features are addressed by incorporating the ideas of fuzzy logic in developing the various stages of the proposed fingerprint recognition scheme. In the first part of this thesis, a novel low-complexity multilevel structural scheme for fingerprint recognition (MSFR) is proposed by first decomposing fingerprint images into regions based on crisp partitioning of some global features of the fingerprints. Then, multilevel feature vectors representing the structural information of the fingerprints are formulated by employing both the global and local features, and a fast multilevel matching algorithm using this representation is devised. Inspired by the ability of fuzzy-based clustering techniques in dealing more effectively with the natural patterns, in the second part of the thesis, a new fuzzy based clustering technique that can deal with the partitioning problem of the fingerprint having the behavioral and anatomical characteristics is proposed and then used to develop a fuzzy based multilevel structural fingerprint recognition scheme. First, a histogram analysis fuzzy c-means (HA-FCM) clustering technique is devised for the partitioning of the fingerprints. The parameters of this partitioning technique, i.e., the number of clusters and the set of initial cluster centers, are determined in an automated manner by employing the histogram of the fingerprint orientation field. The development of the HA-FCM partitioning scheme is further pursued to devise an enhanced HA-FCM (EAH-FCM) algorithm. In this algorithm, the smoothness of the fingerprint partitioning is improved through a regularization of the fingerprint orientation field, and the computational complexity is reduced by decreasing the number of operations and by increasing the convergence rate of the underlying iterative process of the HA-FCM technique. Finally, a new fuzzy based fingerprint recognition scheme (FMSFR), based on the EHA-FCM partitioning scheme and the basic ideas used in the development of the MSFR scheme, is proposed. Extensive experiments are conducted throughout this thesis using a number of challenging benchmark databases. These databases are selected from the FVC2002, FVC2004 and FVC2006 competitions containing a wide variety of challenges for fingerprint recognition. Simulation results demonstrate not only the effectiveness of the proposed techniques and schemes but also their superiority over some of the state-of-the-art techniques, in terms of the recognition accuracy and the computational complexity

    Handbook of Vascular Biometrics

    Get PDF
    corecore