602 research outputs found

    Two plus one is almost three: a fast approximation for multi-view deconvolution

    Get PDF
    Multi-view deconvolution is a powerful image-processing tool for light sheet fluorescence microscopy, providing isotropic resolution and enhancing the image content. However, performing these calculations on large datasets is computationally demanding and time-consuming even on high-end workstations. Especially in long-time measurements on developing animals, huge amounts of image data are acquired. To keep them manageable, redundancies should be removed right after image acquisition. To this end, we report a fast approximation to three-dimensional multi-view deconvolution, denoted 2D+1D multi-view deconvolution, which is able to keep up with the data flow. It first operates on the two dimensions perpendicular and subsequently on the one parallel to the rotation axis, exploiting the rotational symmetry of the point spread function along the rotation axis. We validated our algorithm and evaluated it quantitatively against two-dimensional and three-dimensional multi-view deconvolution using simulated and real image data. 2D+1D multi-view deconvolution takes similar computation time but performs markedly better than the two-dimensional approximation only. Therefore, it will be most useful for image processing in time-critical applications, where the full 3D multi-view deconvolution cannot keep up with the data flow

    Augmented Reality and Its Application

    Get PDF
    Augmented Reality (AR) is a discipline that includes the interactive experience of a real-world environment, in which real-world objects and elements are enhanced using computer perceptual information. It has many potential applications in education, medicine, and engineering, among other fields. This book explores these potential uses, presenting case studies and investigations of AR for vocational training, emergency response, interior design, architecture, and much more

    Context Aware Computing for The Internet of Things: A Survey

    Get PDF
    As we are moving towards the Internet of Things (IoT), the number of sensors deployed around the world is growing at a rapid pace. Market research has shown a significant growth of sensor deployments over the past decade and has predicted a significant increment of the growth rate in the future. These sensors continuously generate enormous amounts of data. However, in order to add value to raw sensor data we need to understand it. Collection, modelling, reasoning, and distribution of context in relation to sensor data plays critical role in this challenge. Context-aware computing has proven to be successful in understanding sensor data. In this paper, we survey context awareness from an IoT perspective. We present the necessary background by introducing the IoT paradigm and context-aware fundamentals at the beginning. Then we provide an in-depth analysis of context life cycle. We evaluate a subset of projects (50) which represent the majority of research and commercial solutions proposed in the field of context-aware computing conducted over the last decade (2001-2011) based on our own taxonomy. Finally, based on our evaluation, we highlight the lessons to be learnt from the past and some possible directions for future research. The survey addresses a broad range of techniques, methods, models, functionalities, systems, applications, and middleware solutions related to context awareness and IoT. Our goal is not only to analyse, compare and consolidate past research work but also to appreciate their findings and discuss their applicability towards the IoT.Comment: IEEE Communications Surveys & Tutorials Journal, 201

    Hydra: loosely coupling the graphics pipeline to facilitate digital preservation.

    Get PDF
    It can be argued that software can be seen as a form of art and digital heritage and yet it rarely enjoys the same efforts afforded to it compared to physical counterparts. There are many reasons for this, such as the increasing costs of maintenance or the reducing amount of expertise in the specific aging technology. Maintaining software and ensuring that it continues to work on current hardware and operating systems is known as digital preservation. There are many ways in which we can attempt to preserve digital software and one of the most effective ones is by using emulation to simulate the obsolete hardware. However, for games and other entertainment media, this technique is not always effective due to a requirement on specific hardware, such as an accelerated GPU in order to reach an acceptable performance for the user. It is often difficult to emulate a GPU and, as such, a different approach often needs to be taken, which reduces the flexibility and portability of the emulation software. Hydra is a new approach to accessing the native hardware from within an emulated environment which allows for a much simpler emulator to be developed and maintained and yet also offers the potential of accessing other types of hardware without needing to modify the emulation software itself. Hydra is designed to be platform agnostic in that not only is it possible to integrate with existing emulators but also be immediately usable from within guest operating systems, ranging from legacy platforms such as MS-DOS, through to modern platforms such as the PlayStation 4 (Orbis OS, a FreeBSD derivative), through to more exotic platforms such as Plan 9 from Bell Laboratories. It can do this because it does not rely on a complex emulator-specific virtual driver stack. This PhD thesis provides the research undertaken for Hydra, including the motivation behind it, the specific problems it was designed to solve and how it can be implemented in a platform agnostic manner. Hydra’s performance is analysed to ascertain the suitability of the output to cater for, specifically, a wide variety of platforms that it can run on in a satisfactory manner within less powerful or emulated environments. A performance analysis study is conducted to ensure that the technology provides an acceptable solution to accessing preserved titles. This study concluded with results showing that Hydra offers a greater performance than software rendering, especially within emulated environments. A bandwidth comparison between Hydra and VNC was undertaken to ascertain the use of the technology as a streaming medium. The results concluded that under specific conditions, Hydra performed better than VNC by streaming at a higher resolution and consuming less bandwidth. Hydra is also utilised in a number of engineering tasks relating to preservation of software. The experiences of using Hydra in this way are discussed, including any difficulties encountered. Lastly, a conclusion is made and any future work is identified

    Multi-wavelength infrared imaging computer systems and applications

    Get PDF
    This dissertation presents the development of three computer systems for multi-wavelength thermal imaging. Two computer systems were developed for the multi-wavelength imaging pyrometers (M-WIPs) that yield non-contact temperature measurements by remotely sensing the surface of objects with unknown wavelength-dependent emissivity. These M-WIP computer systems represent the state-of-art development in remote temperature measurement system based on the multi-wavelength approach. The dissertation research includes M-WIP computer system integration, software development, performance evaluation, and also applications in monitoring and control of temperature distribution of silicon wafers in a rapid thermal process system. The two M-WIPs are capable of data acquisition, signal processing, system calibration, radiometric measurement, parallel processing and process control. Temperature measurement experiments demonstrated the accuracy of ±1°C against blackbody and ±4°C for colorbody objects. Various algorithms were developed and implemented, including real-time two-point non-uniformity correction, thermal image pseudocoloring, PC to SUN workstation data transfer, automatic IR camera integration time control, and radiometric measurement parallel processing. A third computer system was developed for the demonstration of a 3-color InGaAs FPA which can provide images with information in three different IR wavelength range simultaneously. Numbers of functions were developed to demonstrate and characterize 3-color FPAs, and the system was delivered to be used by the 3-color FPA manufacturer
    • …
    corecore