91 research outputs found

    Predictive biometrics: A review and analysis of predicting personal characteristics from biometric data

    Get PDF
    Interest in the exploitation of soft biometrics information has continued to develop over the last decade or so. In comparison with traditional biometrics, which focuses principally on person identification, the idea of soft biometrics processing is to study the utilisation of more general information regarding a system user, which is not necessarily unique. There are increasing indications that this type of data will have great value in providing complementary information for user authentication. However, the authors have also seen a growing interest in broadening the predictive capabilities of biometric data, encompassing both easily definable characteristics such as subject age and, most recently, `higher level' characteristics such as emotional or mental states. This study will present a selective review of the predictive capabilities, in the widest sense, of biometric data processing, providing an analysis of the key issues still adequately to be addressed if this concept of predictive biometrics is to be fully exploited in the future

    Utilizing Linguistic Context To Improve Individual and Cohort Identification in Typed Text

    Full text link
    The process of producing written text is complex and constrained by pressures that range from physical to psychological. In a series of three sets of experiments, this thesis demonstrates the effects of linguistic context on the timing patterns of the production of keystrokes. We elucidate the effect of linguistic context at three different levels of granularity: The first set of experiments illustrate how the nontraditional syntax of a single linguistic construct, the multi-word expression, can create significant changes in keystroke production patterns. This set of experiments is followed by a set of experiments that test the hypothesis on the entire linguistic output of an individual. By taking into account linguistic context, we are able to create more informative feature-sets, and utilize these to improve the accuracy of keystroke dynamic-based user authentication. Finally, we extend our findings to entire populations, or demographic cohorts. We show that typing patterns can be used to predict a group\u27s gender, native language and dominant hand. In addition, keystroke patterns can shed light on the cognitive complexity of a task that a typist is engaged in. The findings of these experiments have far-reaching implications for linguists, cognitive scientists, computer security researchers and social scientists

    Adversarial Activity Detection and Prediction Using Behavioral Biometrics

    Get PDF
    Behavioral biometrics can be used in different security applications like authentication, identification, etc. One of the trending applications is predicting future activities of people and guessing whether they will engage in malicious activities in the future. In this research, we study the possibility of predicting future activities and propose novel methods for near-future activity prediction. First, we study gait signals captured using smartphone accelerometer sensor and build a model to predict a future gait signal. Activity recognition using body movements captured from mobile phone sensors has been a major point of interest in recent research. Data that is being continuously read from mobile sensors can be used to recognize user activity. We propose a model for predicting human body movements based on the previous activity that has been read from sensors and continuously updating our prediction as new data becomes available. Our results show that our model can predict the future movement signal with a high accuracy that can contribute to several applications in the area. Second, we study keystroke acoustics and build a model for predicting future activities of the users by recording their keystrokes audio. Using keystroke acoustics to predict typed text has significant advantages, such as being recorded covertly from a distance and requiring no physical access to the computer system. Recently, some studies have been done on keystroke acoustics, however, to the best of our knowledge none have used them to predict adversarial activities. On a dataset of two million keystrokes consisting of seven adversarial and one benign activity, we use a signal processing approach to extract keystrokes from the audio and a clustering method to recover the typed letters followed by a text recovery module to regenerate the typed words. Furthermore, we use a neural network model to classify the benign and adversarial activities and achieve significant results: (1) we extract individual keystroke sounds from the raw audio with 91% accuracy and recover words from audio recordings in a noisy environment with 71% average top-10 accuracy. (2) We classify adversarial activities with 93% to 98% average accuracy under different operating scenarios. Third, we study the correlation between the personality traits of users with their keystroke and mouse dynamics. Even with the availability of multiple interfaces, such as voice, touch, etc., keyboard and mouse remain the primary interfaces to a computer. Any insights on the relation between keyboard and mouse dynamics with the personality type of the users can provide foundations for various applications, such as advertisement, social media, etc. We use a dataset of keystroke and mouse dynamics collected from 104 users together with their responses to two personality tests to analyze how their interaction with the computer relates to their personality. Our findings show that there are considerable trends and patterns in keystroke and mouse dynamics that are correlated with each personality type

    Application of Keystroke Dynamics Modelling Techniques to Strengthen the User Identification in the Context of E-commerce

    Get PDF
    Keystroke dynamics is a biometric technique to identify users based on analysing habitual rhythm patterns in their typing behaviour. In e-commerce, this technique brings benefits to both security and the analysis of patterns of consumer behaviour. This paper focuses on analysing the keystroke dynamics against an e-commerce site for personal identification. This paper is an empirical reinforcement of previous works, with data extracted from realistic conditions that are of most interest for the practical application of modelling keystroke dynamics in free texts. It was a collaborative work with one of the leading e-commerce companies in Latin America. Experimental results showed that it was possible to identify typists with an accuracy of 89% from a sampling of 300 randomly selected users just by reading comment field keystrokes.VII Workshop Seguridad Informática (WSI)Red de Universidades con Carreras en Informática (RedUNCI

    Application of Keystroke Dynamics Modelling Techniques to Strengthen the User Identification in the Context of E-commerce

    Get PDF
    Keystroke dynamics is a biometric technique to identify users based on analysing habitual rhythm patterns in their typing behaviour. In e-commerce, this technique brings benefits to both security and the analysis of patterns of consumer behaviour. This paper focuses on analysing the keystroke dynamics against an e-commerce site for personal identification. This paper is an empirical reinforcement of previous works, with data extracted from realistic conditions that are of most interest for the practical application of modelling keystroke dynamics in free texts. It was a collaborative work with one of the leading e-commerce companies in Latin America. Experimental results showed that it was possible to identify typists with an accuracy of 89% from a sampling of 300 randomly selected users just by reading comment field keystrokes.VII Workshop Seguridad Informática (WSI)Red de Universidades con Carreras en Informática (RedUNCI

    Stress detection in computer users from keyboard and mouse dynamics

    Get PDF
    Detecting stress in computer users, while technically challenging, is of the utmost importance in the workplace, especially now that remote working scenarios are becoming ubiquitous. In this context, cost-effective, subject-independent systems are needed that can be embedded in consumer devices and classify users' stress in a reliable and unobtrusive fashion. Leveraging keyboard and mouse dynamics is particularly appealing in this context as it exploits readily available sensors. However, available studies are mostly performed in laboratory conditions, and there is a lack of on-field investigations in closer-to-real-world settings. In this study, keyboard and mouse data from 62 volunteers were experimentally collected in-the-wild using a purpose-built Web application, designed to induce stress by asking each subject to perform 8 computer tasks under different stressful conditions. The application of Multiple Instance Learning (MIL) to Random Forest (RF) classification allowed the devised system to successfully distinguish 3 stress-level classes from keyboard (76% accuracy) and mouse (63% accuracy) data. Classifiers were further evaluated via confusion matrix, precision, recall, and F1-score

    A Review of Emotion Recognition Methods from Keystroke, Mouse, and Touchscreen Dynamics

    Get PDF
    Emotion can be defined as a subject’s organismic response to an external or internal stimulus event. The responses could be reflected in pattern changes of the subject’s facial expression, gesture, gait, eye-movement, physiological signals, speech and voice, keystroke, and mouse dynamics, etc. This suggests that on the one hand emotions can be measured/recognized from the responses, and on the other hand they can be facilitated/regulated by external stimulus events, situation changes or internal motivation changes. It is well-known that emotion has a close relationship with both physical and mental health, usually affecting an individual’s and a team’s work performance, thus emotion recognition is an important prerequisite for emotion regulation towards better emotional states and work performance. The primary problem in emotion recognition is how to recognize a subject’s emotional states easily and accurately. Currently, there are a body of good research on emotion recognition from facial expression, gesture, gait, eye-tracking, and other physiological signals such as speech and voice, but they are all intrusive and obtrusive to some extent. In contrast, keystroke, mouse and touchscreen (KMT) dynamics data can be collected non-intrusively and unobtrusively as secondary data responding to primary physical actions, thus, this paper aims to review the state-of-the-art research on emotion recognition from KMT dynamics and to identify key research challenges, opportunities and a future research roadmap for referencing. In addition, this paper answers the following six research questions (RQs): (1) what are the commonly used emotion elicitation methods and databases for emotion recognition? (2) which emotions could be recognized from KMT dynamics? (3) what key features are most appropriate for recognizing different specific emotions? (4) which classification methods are most effective for specific emotions? (5) what are the application trends of emotion recognition from KMT dynamics? (6) which application contexts are of greatest concern

    Dynamic Template Adjustment in Continuous Keystroke Dynamics

    Get PDF
    Dynamika úhozů kláves je jednou z behaviorálních biometrických charakteristik, kterou je možné použít pro průběžnou autentizaci uživatelů. Vzhledem k tomu, že styl psaní na klávesnici se v čase mění, je potřeba rovněž upravovat biometrickou šablonu. Tímto problémem se dosud, alespoň pokud je autorovi známo, žádná studie nezabývala. Tato diplomová práce se pokouší tuto mezeru zaplnit. S pomocí dat o časování úhozů od 22 dobrovolníků bylo otestováno několik technik klasifikace, zda je možné je upravit na online klasifikátory, zdokonalující se bez učitele. Výrazné zlepšení v rozpoznání útočníka bylo zaznamenáno u jednotřídového statistického klasifikátoru založeného na normované Euklidovské vzdálenosti, v průměru o 23,7 % proti původní verzi bez adaptace, zlepšení však bylo pozorováno u všech testovacích sad. Změna míry rozpoznání správného uživatele se oproti tomu různila, avšak stále zůstávala na přijatelných hodnotách.Keystroke dynamics is one of behavioural biometric characteristics which can be employed for continuous user authentication. As typing style on a keyboard changes in time, the template adapting is necessary. No study covered this topic yet, as far as the author knows. This master thesis tries to fill this gap. Several classification techniques were exercised with help of keystroke data from 22 volunteers in order to test if they can be improved to unsupervised online classifiers. A significant improvement in impostor recognition was noted at one-class statistical classifier based on normed Euclidean distance. The impostor could make 23.7 % actions less than in offline version on average but the improvement was obseved with all test sets. In contrary, the genuine user recognition varied from user to user but it still kept at acceptable values.

    Application of Keystroke Dynamics Modelling Techniques to Strengthen the User Identification in the Context of E-commerce

    Get PDF
    Keystroke dynamics is a biometric technique to identify users based on analysing habitual rhythm patterns in their typing behaviour. In e-commerce, this technique brings benefits to both security and the analysis of patterns of consumer behaviour. This paper focuses on analysing the keystroke dynamics against an e-commerce site for personal identification. This paper is an empirical reinforcement of previous works, with data extracted from realistic conditions that are of most interest for the practical application of modelling keystroke dynamics in free texts. It was a collaborative work with one of the leading e-commerce companies in Latin America. Experimental results showed that it was possible to identify typists with an accuracy of 89% from a sampling of 300 randomly selected users just by reading comment field keystrokes.VII Workshop Seguridad Informática (WSI)Red de Universidades con Carreras en Informática (RedUNCI

    Extending the Predictive Capabilities of Hand-oriented Behavioural Biometric Systems

    Get PDF
    The discipline of biometrics may be broadly defined as the study of using metrics related to human characteristics as a basis for individual identification and authentication, and many approaches have been implemented in recent years for many different scenarios. A sub-section of biometrics, specifically known as soft biometrics, has also been developing rapidly, which focuses on the additional use of information which is characteristic of a user but not unique to one person, examples including subject age or gender. Other than its established value in identification and authentication tasks, such useful user information can also be predicted within soft biometrics modalities. Furthermore, some most recent investigations have demonstrated a demand for utilising these biometric modalities to extract even higher-level user information, such as a subject\textsc{\char13}s mental or emotional state. The study reported in this thesis will focus on investigating two soft biometrics modalities, namely keystroke dynamics and handwriting biometrics (both examples of hand-based biometrics, but with differing characteristics). The study primarily investigates the extent to which these modalities can be used to predict human emotions. A rigorously designed data capture protocol is described and a large and entirely new database is thereby collected, significantly expanding the scale of the databases available for this type of study compared to those reported in the literature. A systematic study of the predictive performance achievable using the data acquired is presented. The core analysis of this study, which is to further explore of the predictive capability of both handwriting and keystroke data, confirm that both modalities have the capability for predicting higher level mental states of individuals. This study also presents the implementation of detailed experiments to investigate in detail some key issues (such as amount of data available, availability of different feature types, and the way ground truth labelling is established) which can enhance the robustness of this higher level state prediction technique
    corecore