26 research outputs found

    RF to Millimeter-wave Linear Power Amplifiers in Nanoscale CMOS SOI Technology

    Get PDF
    The low manufacturing cost, integration capability with baseband and digital circuits, and high operating frequency of nanoscale CMOS technologies have propelled their applications into RF and microwave systems. Implementing fully-integrated RF to millimeter-wave (mm-wave) CMOS power amplifiers (PAs), nevertheless, remains challenging due to the low breakdown voltages of CMOS transistors and the loss from on-chip matching networks. These limitations have reduced the design space of CMOS power amplifiers to narrow-band, low linearity metrics often with insufficient gain, output power, and efficiency. A new topology for implementing power amplifiers based on stacking of CMOS SOI transistors is proposed. The input RF power is coupled to the transistors using on-chip transformers, while the gate terminal of teach transistor is dynamically biased from the output node. The output voltages of the stacked transistors are added constructively to increase the total output voltage swing and output power. Moreover, the stack configuration increases the optimum load impedance of the PA to values close to 50 ohm, leading to power, efficiency and bandwidth enhancements. Practical design issues such as limitation in the number of stacked transistors, gate oxide breakdown, stability, effect of parasitic capacitances on the performance of the PA and large chip areas have also been addressed. Fully-integrated RF to mm-wave frequency CMOS SOI PAs are successfully implemented and measured using the proposed topology

    A linear high-efficiency millimeter-wave CMOS Doherty radiator leveraging on-antenna active load-modulation

    Get PDF
    This thesis presents a Doherty Radiator architecture that explores multi-feed antennas to achieve an on-antenna Doherty load modulation network and demonstrate high-speed high-efficiency transmission of wideband modulated signals. On the passive circuits, we exploit the multi-feed antenna concept to realize compact and high-efficiency on-antenna active load modulation for close-to-ideal Doherty operation, on-antenna power combining, and mm-Wave signal radiation. Moreover, we analyze the far-field transmission of the proposed Doherty Radiator and demonstrate its wide Field-of-View (FoV). On the active circuits, we employ a GHz-bandwidth adaptive biasing at the Doherty Auxiliary power amplifier (PA) path to enhance the Main/Auxiliary Doherty cooperation and appropriate turning-on/-off of the Auxiliary path. A proof-of-concept Doherty Radiator implemented in a 45nm CMOS SOI process over 62-68GHz exhibits a consistent 1.45-1.53Ă— PAE enhancement at 6dB PBO over an idealistic class-B PA with the same PAE at P1dB. The measured Continuous-Wave (CW) performance at 65GHz demonstrates 19.4/19.2dBm PSAT/P1dB and achieves 27.5%/20.1% PAE at peak/6dB PBO, respectively. For single-carrier 1Gsym/s 64-QAM modulation, the Doherty Radiator shows average output power of 14.2dBm with an average 20.2% PAE and -26.7dB EVM without digital predistortion. Consistent EVMs are observed over the entire antenna FoV, demonstrating spatially undistorted transmission and constant Doherty PBO efficiency enhancement.M.S

    CMOS MESFET Cascode Amplifiers for RFIC Applications

    Get PDF
    abstract: There is an ever-increasing demand for higher bandwidth and data rate ensuing from exploding number of radio frequency integrated systems and devices. As stated in the Shannon-Hartley theorem, the maximum achievable data rate of a communication channel is linearly proportional to the system bandwidth. This is the main driving force behind pushing wireless systems towards millimeter-wave frequency range, where larger bandwidth is available at a higher carrier frequency. Observing the Moor’s law, highly scaled complementary metal–oxide–semiconductor (CMOS) technologies provide fast transistors with a high unity power gain frequency which enables operating at millimeter-wave frequency range. CMOS is the compelling choice for digital and signal processing modules which concurrently offers high computation speed, low power consumption, and mass integration at a high manufacturing yield. One of the main shortcomings of the sub-micron CMOS technologies is the low breakdown voltage of the transistors that limits the dynamic range of the radio frequency (RF) power blocks, especially with the power amplifiers. Low voltage swing restricts the achievable output power which translates into low signal to noise ratio and degraded linearity. Extensive research has been done on proposing new design and IC fabrication techniques with the goal of generating higher output power in CMOS technology. The prominent drawbacks of these solutions are an increased die area, higher cost per design, and lower overall efficiency due to lossy passive components. In this dissertation, CMOS compatible metal–semiconductor field-effect transistor (MESFETs) are utilized to put forward a new solution to enhance the power amplifier’s breakdown voltage, gain and maximum output power. Requiring no change to the conventional CMOS process flow, this low cost approach allows direct incorporation of high voltage power MESFETs into silicon. High voltage MESFETs were employed in a cascode structure to push the amplifier’s cutoff frequency and unity power gain frequency to the 5G and K-band frequency range. This dissertation begins with CMOS compatible MESFET modeling and fabrication steps, and culminates in the discussion of amplifier design and optimization methodology, parasitic de-embedding steps, simulation and measurement results, and high resistivity RF substrate characterization.Dissertation/ThesisDoctoral Dissertation Electrical Engineering 201

    Broadband High Gain mm-Wave CMOS Amplifier With Complex Device Neutralization for 5G Communication System

    Get PDF
    Presently, the major challenge at the device level is the lack of sufficient device power gain of commercial IC technologies at THz. In this dissertation, we will address this device-level challenge. We first characterize their THz behaviors/modeling. Then, novel circuits-aware device core designs and optimizations to boost the device-level “gain-bandwidth product” at THz are presented. This dissertation presents a wideband power amplifier at THz frequency range. The proposed power amplifier covers the frequency range from 100 to 125 GHz, supporting the operation in the low band of the D-band. Moreover, a novel embedding network, called complex neutralization scheme, is presented to boost the power gain of the device for near-fmax operation. Furthermore, in-house automation program is presented for optimum selection of the complex neutralization embedding network. The goal of this program is to maximize device Gain-BW for the available technology at target operating frequencies. Furthermore, the proposed power amplifier is cascaded to increase the output power along with high gain. The presented work contains 3-stage complex neutralized differential blocks with output power combiner. The matching stages are optimized for low loss and wideband operation. The proposed power amplifier is taped-out on using GlobalFoundries 45nm FD-SOI CMOS process. The electromagnetic simulations for the proposed power amplifier, which is biased in class AB, demonstrate a small signal gain of 19dB at 115 GHz with k factor more than 17. Moreover, the large signal simulations show a peak power added efficiency of 14% with saturated output power of 12.6dBm. The proposed system has a total active area of 0.23mm².M.S

    KEY FRONT-END CIRCUITS IN MILLIMETER-WAVE SILICON-BASED WIRELESS TRANSMITTERS FOR PHASED-ARRAY APPLICATIONS

    Get PDF
    Millimeter-wave (mm-Wave) phased arrays have been widely used in numerous wireless systems to perform beam forming and spatial filtering that can enhance the equivalent isotropically radiated power (EIRP) for the transmitter (TX). Regarding the existing phased-array architectures, an mm-Wave transmitter includes several building blocks to perform the desired delivered power and phases for wireless communication. Power amplifier (PA) is the most important building block. It needs to offer several advantages, e.g., high efficiency, broadband operation and high linearity. With the recent escalation of interest in 5G wireless communication technologies, mm-Wave transceivers at the 5G frequency bands (e.g., 28 GHz, 37 GHz, 39 GHz, and 60 GHz) have become an important topic in both academia and industry. Thus, PA design is a critical obstacle due to the challenges associated with implementing wideband, highly efficient and highly linear PAs at mm-Wave frequencies. In this dissertation, we present several PA design innovations to address the aforementioned challenges. Additionally, phase shifter (PS) also plays a key role in a phased-array system, since it governs the beam forming quality and steering capabilities. A high-performance phase shifter should achieve a low insertion loss, a wide phase shifting range, dense phase shift angles, and good input/output matching.Ph.D

    Fully Integrated 60 GHz Power Amplifiers in 45nm SOI CMOS

    Get PDF
    With the rapid growth of consumer demand for high data rates and high speed communications, the wireless spectrum has become increasingly precious. This has promoted the evolution of new standards and modulation schemes to improve spectral e fficiency. The allocation of large bandwidths is an alternative to increase the channel capacity and data rate, however the availability of spectrum below 10 GHz is very limited. Recently, the 60 GHz spectrum has emerged as a potential candidate to support multi-Gb/s applications. It off ers 7 GHz of unlicensed spectrum, for development of Wireless Personal Area Networks (WPAN) and cellular backhauls. Meanwhile, the scaling and advancement of low-cost complementary metal-oxide semiconductor (CMOS) technologies has enabled the use of CMOS devices at millimeter wave frequencies and the integration of analogue and digital circuitry has created platform for single chip radio development. However, low power density, low optimum load resistance and poor quality integrated passives (due to lossy silicon substrate) make CMOS technology a poor candidate for power ampli fier (PA) design when, compared to silicon germanium and Group III-V technologies (gallium nitride, gallium arsenide and indium phosphide). In order to overcome the above mentioned challenges in CMOS, this thesis re-explores FET-stacking as a power combining technique at 60 GHz using 45nm silicon-on-insulator (SOI) CMOS for millimeter-wave PAs. The stacking approach enables the use of higher supply voltages to obtain higher output power, and its higher load line resistance Ropt allows for the use of low impedance transformation matching networks. The reliability of CMOS PA under large signal operation is also addressed and improved with the FET-stacking approach applied in this work. This thesis divides the millimeter-wave PA design problem in to two areas, active and passive, both of which are critically designed for optimum performance in terms of effi ciency and output power while taking device and substrate parasitics into consideration. A transistor unit cell combination topology, the 'Manifold', has been analyzed and applied in 45 nm SOI CMOS for large RF power transistor cells. Moreover, various topologies of slow wave coplanar waveguide (CPW) lines are analyzed and implemented on the SOI substrate to synthesize inductors for matching networks at 60 GHz. To demonstrate the active and passive design performance in 45nm SOI CMOS at 60 GHz, a two-stage cascode PA is presented. Measurement under continuous wave (CW) stimulus shows 18.2 dB gain, a 3 dB bandwidth of 20%, 14 dBm saturated output power at 22% peak power-added e fficiency (PAE). Moreover, to validate the FET-stacking analysis, a three-stack PA is designed and fabricated with an output performance of 8.8 dB gain, a 3 dB bandwidth of 20%, 16 dBm saturated output power at 14% peak PAE. Finally, a wideband three stage amplifi er is designed utilizing the two-stage cascode and three-stack PA, achieving 21.5 dB at gain over a fractional bandwidth of 20%, and 16 dBm saturated output power at 13.8% PAE
    corecore