150 research outputs found

    Light path design for optical disk systems

    Get PDF
    No abstract

    MEMS based catheter for endoscopic optical coherence tomography

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Advances in SQUID-detected magnetic resonance force microscopy

    Get PDF
    In this thesis, we describe the latest advances in SQUID-detected Magnetic Resonance Force Microscopy (MRFM). We have developed a new MRFM setup, which we describe in great detail, in particular our efforts to remove vibrational noise from our dry dilution refrigerator, whilst maintaining the lowest possible operating temperatures, and our solution to reduce the crosstalk between the B1 field and SQUID (Superconducting QUantum Interference Device) detection. We have used the setup to further investigate the MRFM signals of copper nuclei, with a specific focus on the usage of higher modes of the cantilever as source for the B1 field, resulting in an MRFM frequency shift signal from the Boltzmann polarization of spins in a voxel as small as (40 nm)3. Furthermore, we have investigated the spin system in diamond, where we found evidence of the suppression of spin-diffusion in the layer of surface spins due to our high magnetic field gradients.Quantum Matter and Optic

    Challenges in flexible microsystem manufacturing : fabrication, robotic assembly, control, and packaging.

    Get PDF
    Microsystems have been investigated with renewed interest for the last three decades because of the emerging development of microelectromechanical system (MEMS) technology and the advancement of nanotechnology. The applications of microrobots and distributed sensors have the potential to revolutionize micro and nano manufacturing and have other important health applications for drug delivery and minimal invasive surgery. A class of microrobots studied in this thesis, such as the Solid Articulated Four Axis Microrobot (sAFAM) are driven by MEMS actuators, transmissions, and end-effectors realized by 3-Dimensional MEMS assembly. Another class of microrobots studied here, like those competing in the annual IEEE Mobile Microrobot Challenge event (MMC) are untethered and driven by external fields, such as magnetic fields generated by a focused permanent magnet. A third class of microsystems studied in this thesis includes distributed MEMS pressure sensors for robotic skin applications that are manufactured in the cleanroom and packaged in our lab. In this thesis, we discuss typical challenges associated with the fabrication, robotic assembly and packaging of these microsystems. For sAFAM we discuss challenges arising from pick and place manipulation under microscopic closed-loop control, as well as bonding and attachment of silicon MEMS microparts. For MMC, we discuss challenges arising from cooperative manipulation of microparts that advance the capabilities of magnetic micro-agents. Custom microrobotic hardware configured and demonstrated during this research (such as the NeXus microassembly station) include micro-positioners, microscopes, and controllers driven via LabVIEW. Finally, we also discuss challenges arising in distributed sensor manufacturing. We describe sensor fabrication steps using clean-room techniques on Kapton flexible substrates, and present results of lamination, interconnection and testing of such sensors are presented

    NASA Tech Briefs, January 1995

    Get PDF
    Topics include: Sensors; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences; Books and Report

    CMOS optical centroid processor for an integrated Shack-Hartmann wavefront sensor

    Get PDF
    A Shack Hartmann wavefront sensor is used to detect the distortion of light in an optical wavefront. It does this by sampling the wavefront with an array of lenslets and measuring the displacement of focused spots from reference positions. These displacements are linearly related to the local wavefront tilts from which the entire wavefront can be reconstructed. In most Shack Hartmann wavefront sensors, a CCD is used to sample the entire wavefront, typically at a rate of 25 to 60 Hz, and a whole frame of light spots is read out before their positions are processed. This results in a data bottleneck. In this design, parallel processing is achieved by incorporating local centroid processing for each focused spot, thereby requiring only reduced bandwidth data to be transferred off-chip at a high rate. To incorporate centroid processing at the sensor level requires high levels of circuit integration not possible with a CCD technology. Instead a standard 0.7J..lmCMOS technology was used but photodetector structures for this technology are not well characterised. As such characterisation of several common photodiode structures was carried out which showed good responsitivity of the order of 0.3 AIW. Prior to fabrication on-chip, a hardware emulation system using a reprogrammable FPGA was built which implemented the centroiding algorithm successfully. Subsequently, the design was implemented as a single-chip CMOS solution. The fabricated optical centroid processor successfully computed and transmitted the centroids at a rate of more than 2.4 kHz, which when integrated as an array of tilt sensors will allow a data rate that is independent of the number of tilt sensors' employed. Besides removing the data bottleneck present in current systems, the design also offers advantages in terms of power consumption, system size and cost. The design was also shown to be extremely scalable to a complete low cost real time adaptive optics system

    NASA Tech Briefs Index, 1977, volume 2, numbers 1-4

    Get PDF
    Announcements of new technology derived from the research and development activities of NASA are presented. Abstracts, and indexes for subject, personal author, originating center, and Tech Brief number are presented for 1977

    International Symposium on Magnetic Suspension Technology, Part 1

    Get PDF
    The goal of the symposium was to examine the state of technology of all areas of magnetic suspension and to review related recent developments in sensors and controls approaches, superconducting magnet technology, and design/implementation practices. The symposium included 17 technical sessions in which 55 papers were presented. The technical session covered the areas of bearings, sensors and controls, microgravity and vibration isolation, superconductivity, manufacturing applications, wind tunnel magnetic suspension systems, magnetically levitated trains (MAGLEV), space applications, and large gap magnetic suspension systems

    Multi-channel Scanning SQUID Microscopy

    Get PDF
    I designed, fabricated, assembled, and tested an 8-channel high-Tc scanning SQUID system. I started by modifying an existing single-channel 77 K high-Tc scanning SQUID microscope into a multi-channel system with the goal of reducing the scanning time and improving the spatial resolution by increasing the signal-to-noise ratio S/N. I modified the window assembly, SQUID chip assembly, cold-finger, and vacuum connector. The main concerns for the multi-channel system design were to reduce interaction between channels, to optimize the use of the inside space of the dewar for more than 50 shielded wires, and to achieve good spatial resolution. In the completed system, I obtained the transfer function and the dynamic range (Fmax ~ 11F0) for each SQUID. At 1kHz, the slew rate is about 3000 F0/s. I also found that the white noise level varies from 5 mF0 /Hz1/2 to 20 mF0 /Hz1/2 depending on the SQUID. A new data acquisition program was written that triggered on position and collects data from up to eight SQUIDs. To generate a single image from the multi-channel system, I calibrated the tilt of the xy-stage and z-stage manually, rearranged the scanned data by cutting overlapping parts, and determined the applied field by multiplying by the mutual inductance matrix. I found that I could reduce scanning time and improve the image quality by doing so. In addition, I have analyzed and observed the effect of position noise on magnetic field images and used these results to find the position noise in my scanning SQUID microscope. My analysis reveals the relationship between spatial resolution and position noise and that my system was dominated by position noise under typical operating conditions. I found that the smaller the sensor-sample separation, the greater the effect of position noise is on the total effective magnetic field noise and on spatial resolution. By averaging several scans, I found that I could reduce position noise and that the spatial resolution can be improved somewhat. Using a current injection technique with an x-SQUID, and (i) subtracting high-frequency data from low-frequency data, or (ii) taking the derivative of magnetic field Bx with respect to x, I show that I can find defects in superconducting MRI wires
    corecore