3,001 research outputs found

    Comb-based WDM transmission at 10 Tbit/s using a DC-driven quantum-dash mode-locked laser diode

    Full text link
    Chip-scale frequency comb generators have the potential to become key building blocks of compact wavelength-division multiplexing (WDM) transceivers in future metropolitan or campus-area networks. Among the various comb generator concepts, quantum-dash (QD) mode-locked laser diodes (MLLD) stand out as a particularly promising option, combining small footprint with simple operation by a DC current and offering flat broadband comb spectra. However, the data transmission performance achieved with QD-MLLD was so far limited by strong phase noise of the individual comb tones, restricting experiments to rather simple modulation formats such as quadrature phase shift keying (QPSK) or requiring hard-ware-based compensation schemes. Here we demonstrate that these limitations can be over-come by digital symbol-wise phase tracking algorithms, avoiding any hardware-based phase-noise compensation. We demonstrate 16QAM dual-polarization WDM transmission on 38 channels at an aggregate net data rate of 10.68 Tbit/s over 75 km of standard single-mode fiber. To the best of our knowledge, this corresponds to the highest data rate achieved through a DC-driven chip-scale comb generator without any hardware-based phase-noise reduction schemes

    PAM4-바이너리 브리지 칩용 PAM4 트랜스미터 설계

    Get PDF
    학위논문(석사) -- 서울대학교대학원 : 공과대학 전기·정보공학부, 2022. 8. 정덕균.고성능 컴퓨팅 시스템, 대용량의 데이터 센터, AI 기술의 발전으로 인해 유선 통신의 대역폭 요구 수준은 기하급수적으로 증가하고 있다. 그러나 I/O 회로의 핀당 대역폭의 향상은 통신 채널의 다양한 한계로 인해 어려움을 겪고 있다. 이는 차세대 DRAM 분야에서도 예외는 아니다. 핀당 데이터 전송 속도를 증가시키는 연구 방향에서는 어느 정도 한계에 봉착하면서 최근에는 High Bandwidth Memory (HBM)와 같이 핀의 개수를 급격히 늘려서 대역폭을 증가시키는 기술도 발전하고 있다. 다른 접근 방식 중 한가지가 다중 레벨 신호 방식이다. 기존의 Non-Return-to-Zero (NRZ) 신호 대신에 다중 레벨 신호 방식을 이용하면 동일한 Nyquist 주파수에서 데이터 속도를 높일 수 있고 이는 DRAM의 차세대 고대역폭 I/O 인터페이스에 좋은 솔루션이 될 수 있으며 현재까지는 4레벨 펄스 진폭 변조 방식 (PAM-4)이 널리 채택되어 있다. 하지만 현재 PAM-4 방식 DRAM이 양산 단계가 아니기 때문에 PAM-4 전용 Memory Tester가 없는 상황이다. 본 논문에서는 차세대 메모리 테스트를 위한 32 Gb/s PAM4 바이너리 브리지에서의 트랜스미터를 제안한다. NRZ 테스터에서 브리지로 전송된 저속 데이터는 고속 PAM4 데이터로 변환되어 메모리로 전달된다. 접지 종단 PAM4 드라이버는 2-탭 피드포워드 이퀄라이저로 출력 전류를 제어하여 0.95의 레벨 불일치 비율 (RLM)을 달성함으로써 단일 종단 출력을 제공한다. 40 nm CMOS 기술로 제작된 브리지 트랜스미터는 0.57 mm2의 활성 영역을 차지하고 102.1 mW의 전력을 소모한다.With the advancement of high-performance computing systems, large-capacity data centers, and AI technologies, the level of bandwidth demand for wired communication is increasing exponentially. However, the improvement of the bandwidth per pin in the I/O circuit compared to the required bandwidth level is difficult due to various limitations of the transmission channel. This is no exception in the next generation of DRAM. While facing limitations from the perspective of research that increases data transmission speed per pin, technologies that increase I/O bandwidth by rapidly increasing the number of pins, such as High Bandwidth Memory (HBM), have also recently developed. One of the other approaches is a multi-level signaling method. Using a multi-level signaling method instead of a conventional Non-Return-to-Zero (NRZ) signal can increase data speed at the same Nyquist frequency, which can be a good solution for the next-generation high-bandwidth I/O interface of DRAM, and so far, a four-level Pulse Amplitude Modulation (PAM-4) has been widely adopted. However, since PAM4 DRAM is not in the mass production stage yet, there is no memory tester dedicated to PAM4 signaling. This paper proposes a transmitter block on a 32 Gb/s PAM4 binary bridge for next-generation memory testing. The low-speed data transmitted from the NRZ tester to the bridge is converted into high-speed PAM4 data through half-rate clock control and transferred to the memory. The ground termination PAM4 driver provides a single-ended output by controlling the output current with a two-tap feed forward equalizer to achieve a Level separation Mismatch Ratio (RLM) of 0.95. Bridge transmitter manufactured with 40 nm CMOS technology occupies an active area of 0.57 mm2 and consumes 102.1 mW of power.ABSTRACT I CONTENTS Ⅲ LIST OF FIGURES Ⅴ LIST OF TABLES Ⅶ CHAPTER 1 INTRODUCTION 1 1.1 MOTIVATION 1 1.2 THESIS ORGANIZATION 4 CHAPTER 2 BACKGROUNDS 5 2.1 OVERVIEW 5 2.2 BASIC OF MULTI LEVEL SIGNALING 7 2.3 NECESSITY OF PAM4-BINARY BRIDGE 11 CHAPTER 3 DESIGN OF PAM4 TRANSMITTER FOR PAM4-BINARY BRIDGE 14 3.1 DESIGN CONSIDERATION 14 3.2 OVERALL ARCHITECTURE 17 3.3 CIRCUIT IMPLEMENTATION 19 3.3.1 CLOCK GENERATOR 19 3.3.2 PARALLEL PRBS GENERATOR 23 3.3.3 DATA ALIGN / GRAY CODE ENDCODER 26 3.3.4 FFE CONTROL/ SERIALIZER 30 3.3.5 PAM4 DRIVER 33 CHAPTER 4 MEASUREMENT RESULTS 38 4.1 CHIP PHOTOMICROGRAPH 38 4.2 MEASUREMENT SETUP 39 4.3 MEASUREMENT RESULTS 40 4.4 PERFORMANCE SUMMARY 42 CHAPTER 5 CONCLUSION 46 BIBLIOGRAPHY 47 초 록 50석

    An Energy-Efficient Reconfigurable Mobile Memory Interface for Computing Systems

    Get PDF
    The critical need for higher power efficiency and bandwidth transceiver design has significantly increased as mobile devices, such as smart phones, laptops, tablets, and ultra-portable personal digital assistants continue to be constructed using heterogeneous intellectual properties such as central processing units (CPUs), graphics processing units (GPUs), digital signal processors, dynamic random-access memories (DRAMs), sensors, and graphics/image processing units and to have enhanced graphic computing and video processing capabilities. However, the current mobile interface technologies which support CPU to memory communication (e.g. baseband-only signaling) have critical limitations, particularly super-linear energy consumption, limited bandwidth, and non-reconfigurable data access. As a consequence, there is a critical need to improve both energy efficiency and bandwidth for future mobile devices.;The primary goal of this study is to design an energy-efficient reconfigurable mobile memory interface for mobile computing systems in order to dramatically enhance the circuit and system bandwidth and power efficiency. The proposed energy efficient mobile memory interface which utilizes an advanced base-band (BB) signaling and a RF-band signaling is capable of simultaneous bi-directional communication and reconfigurable data access. It also increases power efficiency and bandwidth between mobile CPUs and memory subsystems on a single-ended shared transmission line. Moreover, due to multiple data communication on a single-ended shared transmission line, the number of transmission lines between mobile CPU and memories is considerably reduced, resulting in significant technological innovations, (e.g. more compact devices and low cost packaging to mobile communication interface) and establishing the principles and feasibility of technologies for future mobile system applications. The operation and performance of the proposed transceiver are analyzed and its circuit implementation is discussed in details. A chip prototype of the transceiver was implemented in a 65nm CMOS process technology. In the measurement, the transceiver exhibits higher aggregate data throughput and better energy efficiency compared to prior works

    SIM-DSP: A DSP-Enhanced CAD Platform for Signal Integrity Macromodeling and Simulation

    Get PDF
    Macromodeling-Simulation process for signal integrity verifications has become necessary for the high speed circuit system design. This paper aims to introduce a “VLSI Signal Integrity Macromodeling and Simulation via Digital Signal Processing Techniques” framework (known as SIM-DSP framework), which applies digital signal processing techniques to facilitate the SI verification process in the pre-layout design phase. Core identification modules and peripheral (pre-/post-)processing modules have been developed and assembled to form a verification flow. In particular, a single-step discrete cosine transform truncation (DCTT) module has been developed for modeling-simulation process. In DCTT, the response modeling problem is classified as a signal compression problem, wherein the system response can be represented by a truncated set of non-pole based DCT bases, and error can be analyzed through Parseval’s theorem. Practical examples are given to show the applicability of our proposed framework

    Technical Design Report for the PANDA Micro Vertex Detector

    Get PDF
    This document illustrates the technical layout and the expected performance of the Micro Vertex Detector (MVD) of the PANDA experiment. The MVD will detect charged particles as close as possible to the interaction zone. Design criteria and the optimisation process as well as the technical solutions chosen are discussed and the results of this process are subjected to extensive Monte Carlo physics studies. The route towards realisation of the detector is outlined

    Scintillator Pad Detector: Very Front End Electronics

    Get PDF
    El Laboratori d'Altes Energies de La Salle és un membre d'un grup acreditat per la Generalitat. Aquest grup està format per part del Departament d'Estructura i Constituents de la Matèria de la Facultat de Física de la Universitat de Barcelona, part del departament d'Electrònica de la mateixa Facultat i pel grup de La Salle. Tots ells estan involucrats en el disseny d'un subdetector en l'experiment de LHCb del CERN: el SPD (Scintillator Pad Detector). El SPD és part del Calorímetre de LHCb. Aquest sistema proporciona possibles hadrons d'alta energia, electrons i fotons pel primer nivell de trigger. El SPD està format per una làmina centellejeadora de plàstic, dividida en 600 cel.les de diferent tamany per obtenir una millor granularitat aprop del feix. Les partícules carregades que travessin el centellejador generaran una ionització del mateix, a diferència dels fotons que no la ionitzaran. Aquesta ionització, generarà un pols de llum que serà recollit per una WLS que està enrotllada dins de les cel.les centellejadores. La llum serà transmesa al sistema de lectura mitjançant fibres clares. Per reducció de costos, aquestes 6000 cel.les estan dividides en grups, usant MAPMT (fotomultiplicadors multiànode) de 64 canals per rebre la informació en el sistema de lectura. El senyal de sortida dels fotomultilplicadors és irregular degut al baix nivell de fotoestadística, uns 20-30 fotoelectrons per MIP, i degut també a la resposta de la fibra WLS, que té un temps de baixada lent. Degut a tot això, el processat del senyal, es realitza primer durant la integració de la càrrega total i finalment per la correcció de la cua que conté el senyal provinent del PMT. Aquesta Tesi està enfocada en el sistema de lectura de l'electrònica del VFE del SPD. Aquest, està format per un ASIC (dissenyat pel grup de la UB) encarregat d'integrar el senyal, compensar el senyal restant i comparar el nivell d'energia obtingut amb un llindar programable (fa la distinció entre electrons i fotons), una FPGA que programa aquests llindars i compensacions de cada ASIC i fa el mapeig de cada canal rebut en el detector i finalment usa serialitzadors LVDS per enviar la informació de sortida al trigger de primer nivell. En el disseny d'aquest tipus d'electrònica s'haurà de tenir en compte, per un costat, restriccions de tipus mecànic: l'espai disponible per l'electrònica és limitat i escàs, i per un altre costat, el nivell de radiació que deurà suportar és considerable i s'haurà de comprobar que tots els components superin un cert test de radiació, i finalment, també s'haurà de tenir en compte la distància que separa els VFE dels racks on la informació és enviada i el tipus de senyal amb el que es treballa en aquest tipus d'experiments: mixta i de poc rang.El Laboratorio de Altas Energías de la Salle es un miembro de un grupo acreditado por La Generalitat. Este grupo está formado por parte del departamento de Estructura i Constituents de la Matèria de la Facultad de Física de la Universidad de Barcelona, parte del departamento de Electrónica de la misma Facultad y el grupo de La Salle. Todos ellos están involucrados en el diseño de un subdetector en el experimento de LHCb del CERN: El SPD (Scintillator Pad Detector). El SPD es parte del Calorímetro de LHCb. Este sistema proporciona posibles hadrones de alta energía, electrones y fotones para el primer nivel de trigger.El SPD está diseñado para distinguir entre electrones y fotones para el trigger de primer nivel. Este detector está formado por una lámina centelleadora de plástico, dividida en 6000 celdas de diferente tamaño para obtener una mejor granularidad cerca del haz. Las partículas cargadas que atraviesen el centelleador generarán una ionización del mismo, a diferencia de los fotones que no la generarán. Esta ionización generará, a su vez, un pulso de luz que será recogido por una WLS que está enrollada dentro de las celdas centelleadoras. La luz será transmitida al sistema de lectura mediante fibras claras. Para reducción de costes, estas 6000 celdas están divididas en grupos, utilizando un MAPMT (fotomultiplicadores multiánodo) de 64 canales para recibir la información en el sistema de lectura. La señal de salida de los fotomultiplicadores es irregular debido al bajo nivel de fotoestadística, unos 20-30 fotoelectrones por MIP, y debido también a la respuesta de la fibra WLS, que tiene un tiempo de bajada lento. Debido a todo esto, el procesado de la señal, se realiza primero mediante la integración de la carga total y finalmente por la substracción de la señal restante fuera del período de integración. Esta Tesis está enfocada en el sistema de lectura de la electrónica del VFE del SPD. Éste, está formado por un ASIC (diseñado por el grupo de la UB) encargado de integrar la señal, compensar la señal restante y comparar el nivel de energía obtenido con un umbral programable (que distingue entre electrones y fotones), y una FPGA que programa estos umbrales y compensaciones de cada ASIC, y mapea cada uno de los canales recibidos en el detector y finalmente usa serializadores LVDS para enviar la información de salida al trigger de primer nivel. En el diseño de este tipo de electrónica se deberá tener en cuenta, por un lado, restricciones del tipo mecánico: el espacio disponible para la electrónica en sí, es limitado y escaso, por otro lado, el nivel de radiación que deberá soportar es considerable y se tendrá que comprobar que todos los componentes usado superen un cierto test de radiación, y finalmente, también se deberá tener en cuenta la distancia que separa los VFE de los racks dónde la información es enviada y el tipo de señal con el que se trabaja en este tipo de experimentos: mixta y de poco rango.Laboratory in La Salle is a member of a Credited Research Group by La Generatitat. This group is formed by a part of the ECM department, a part of the Electronics department at UB (University of Barcelona) and La Salle's group. Together, they are involved in the design of a subdetector at LHCb Experiment at CERN: the SPD (Scintillator Pad Detector). The SPD is a part of LHCb Calorimeter. That system provides high energy hadrons, electron and photons candidates for the first level trigger. The SPD is designed to distinguish electrons and photons for this first level trigger. This detector is a plastic scintillator layer, divided in about 6000 cells of different size to obtain better granularity near the beam. Charged particles will produce, and photons will not, ionisation on the scintillator. This ionisation generates a light pulse that is collected by a Wavelength Shifting (WLS) fibre that is twisted inside the scintillator cell. The light is transmitted through a clear fibre to the readout system. For cost reduction, these 6000 cells are divided in groups using a MAPMT of 64 channels for receiving information in the readout system. The signal outing the SPD PMTs is rather unpredictable as a result of the low number of photostatistics, 20-30 photoelectrons per MIP, and the due to the response of the WLS fibre, which has low decay time. Then, the signal processing must be performed by first integrating the total charge and later subtracting to avoid pile-up. This PhD is focused on the VFE (Very Front End) of SPD Readout system. It is performed by a specific ASIC (designed by the UB group) which integrates the signal, makes the pile-up compensation, and compares the level obtained to a programmable threshold (distinguishing electrons and photons), an FPGA which programs the ASIC thresholds, pile-up subtraction and mapping the channels in the detector and finally LVDS serializers, in order to send information to the first level trigger system. Not only mechanical constraints had to be taken into account in the design of the card as a result of the little space for the readout electronics but also, on one hand, the radiation quote expected in the environment and on the other hand, the distance between the VFE electronics and the racks were information is sent and the signal range that this kind of experiments usually have

    Future benefits and applications of intelligent on-board processing to VSAT services

    Get PDF
    The trends and roles of VSAT services in the year 2010 time frame are examined based on an overall network and service model for that period. An estimate of the VSAT traffic is then made and the service and general network requirements are identified. In order to accommodate these traffic needs, four satellite VSAT architectures based on the use of fixed or scanning multibeam antennas in conjunction with IF switching or onboard regeneration and baseband processing are suggested. The performance of each of these architectures is assessed and the key enabling technologies are identified

    대역폭 증대 기술을 이용한 전력 효율적 고속 송신 시스템 설계

    Get PDF
    학위논문(박사) -- 서울대학교대학원 : 공과대학 전기·정보공학부, 2022.2. 정덕균.The high-speed interconnect at the datacenter is being more crucial as 400 Gb Ethernet standards are developed. At the high data rate, channel loss re-quires bandwidth extension techniques for transmitters, even for short-reach channels. On the other hand, as the importance of east-to-west connection is rising, the data center architectures are switching to spine-leaf from traditional ones. In this trend, the number of short-reach optical interconnect is expected to be dominant. The vertical-cavity surface-emitting laser (VCSEL) is a com-monly used optical modulator for short-reach interconnect. However, since VCSEL has low bandwidth and nonlinearity, the optical transmitter also needs bandwidth-increasing techniques. Additionally, the power consumption of data centers reaches a point of concern to affect climate change. Therefore, this the-sis focuses on high-speed, power-efficient transmitters for data center applica-tions. Before the presenting circuit design, bandwidth extension techniques such as fractionally-spaced feed-forward equalizer (FFE), on-chip transmission line, inductive peaking, and T-coil are mathematically analyzed for their effec-tiveness. For the first chip, a power and area-efficient pulse-amplitude modulation 4 (PAM-4) transmitter using 3-tap FFE based on a slow-wave transmission line is presented. A passive delay line is adopted for generating an equalizer tap to overcome the high clocking power consumption. The transmission line achieves a high slow-wave factor of 15 with double floating metal shields around the differential coplanar waveguide. The transmitter includes 4:1 multi-plexers (MUXs) and a quadrature clock generator for high-speed data genera-tion in a quarter-rate system. The 4:1 MUX utilizes a 2-UI pulse generator, and the input configuration is determined by qualitative analysis. The chip is fabri-cated in 65 nm CMOS technology and occupies an area of 0.151 mm2. The proposed transmitter system exhibits an energy efficiency of 3.03 pJ/b at the data rate of 48 Gb/s with PAM-4 signaling. The second chip presents a power-efficient PAM-4 VCSEL transmitter using 3-tap FFE and negative-k T-coil. The phase interpolators (PIs) generate frac-tionally-spaced FFE tap and correct quadrature phase error. The PAM-4 com-bining 8:1 MUX is proposed rather than combining at output driver with double 4:1 MUXs to reduce serializing power consumption. T-coils at the internal and output node increase the bandwidth and remove inter-symbol interference (ISI). The negative-k T-coil at the output network increases the bandwidth 1.61 times than without T-coil. The VCSEL driver is placed on the high VSS domain for anode driving and power reduction. The chip is fabricated in 40 nm CMOS technology. The proposed VCSEL transmitter operates up to 48 Gb/s NRZ and 64 Gb/s PAM-4 with the power efficiency of 3.03 pJ/b and 2.09 pJ/b, respec-tively.400Gb 이더넷 표준이 개발됨에 따라 데이터 센터의 고속 상호 연결이 더욱 중요해지고 있다. 높은 데이터 속도에서의 채널 손실에 의해 단거리 채널의 경우에도 송신기에 대한 대역폭 확장 기술이 필요하다. 한편, 데이터 센터 내 동-서 연결의 중요성이 높아지면서 데이터 센터 아키텍처가 기존의 아키텍처에서 스파인-리프로 전환되고 있다. 이러한 추세에서 단거리 광학 인터커넥트의 수가 점차 우세해질 것으로 예상된다. 수직 캐비티 표면 방출 레이저(VCSEL)는 일반적으로 단거리 상호 연결을 위해 사용되는 광학 모듈레이터이다. VCSEL은 낮은 대역폭과 비선형성을 가지고 있기 때문에, 광 송신기도 대역폭 증가 기술을 필요로 한다. 또한, 데이터 센터의 전력 소비는 기후 변화에 영향을 미칠 수 있는 우려 지점에 도달했다. 따라서, 본 논문은 데이터 센터 응용을 위한 고속 전력 효율적인 송신기에 초점을 맞추고 있다. 회로 설계를 제시하기 전에, 부분 간격 피드-포워드 이퀄라이저 (FFE), 온칩 전송선로, 인덕터, T-코일과 같은 대역폭 확장 기술을 수학적으로 분석한다. 첫 번째 칩은 저속파 전송선로를 기반으로 한 3-탭 FFE를 사용하는 전력 및 면적 효율적인 펄스-진폭-변조 4(PAM-4) 송신기를 제시한다. 높은 클럭 전력 소비를 극복하기 위해 이퀄라이저 탭 생성을 위해 수동소자 지연 라인을 채택했다. 전송 라인은 차동 동일평면도파관 주위에 이중 플로팅 금속 차폐를 사용하여 15의 높은 전달속도 감쇠를 달성한다. 송신기에는 4:1 멀티플렉서(MUX)와 4-위상 클럭 생성기가 포함되어 있다. 4:1 MUX는 2-UI 펄스 발생기를 사용하며, 정성 분석에 의해 입력 구성이 결정된다. 이 칩은 65 nm CMOS 기술로 제작되었으며 0.151 mm2의 면적을 차지한다. 제안된 송신기 시스템은 PAM-4 신호와 함께 48 Gb/s의 데이터 속도에서 3.03 pJ/b의 에너지 효율을 보여준다. 두 번째 칩에서는 3-탭 FFE 및 역회전 T-코일을 사용하는 전력 효율적인 PAM-4 VCSEL 송신기를 제시한다. 위상 보간기(PI)는 부분 간격 FFE 탭을 생성하고 4-위상 클럭 오류를 수정하는 데 사용된다. 직렬화 전력 소비를 줄이기 위해 출력 드라이버에서 MSB와 LSB를 두 개의 4:1 MUX를 통해 결합하는 대신 8:1 MUX를 통해 PAM-4로 결합하는 회로가 제안된다. 내부 및 출력 노드에서 T-코일은 대역폭을 증가시키고 기호 간 간섭(ISI)을 제거한다. 출력 네트워크에서 역회전 T-코일은 T-코일이 없는 경우보다 대역폭을 1.61배 증가시킨다. VCSEL 드라이버는 양극 구동 및 전력 감소를 위해 높은 VSS 도메인에 배치된다. 이 칩은 40 nm CMOS 기술로 제작되었다. 제안된 VCSEL 송신기는 각각 3.03pJ/b와 2.09pJ/b의 전력 효율로 최대 48Gb/s NRZ와 64Gb/s PAM-4까지 작동한다.ABSTRACT I CONTENTS III LIST OF FIGURES V LIST OF TABLES IX CHAPTER 1 INTRODUCTION 1 1.1 MOTIVATION 1 1.2 THESIS ORGANIZATION 5 CHAPTER 2 BACKGROUND OF HIGH-SPEED INTERFACE 6 2.1 OVERVIEW 6 2.2 BASIS OF DATA CENTER ARCHITECTURE 9 2.3 SHORT-REACH INTERFACE STANDARDS 12 2.4 ANALYSES OF BANDWIDTH EXTENSION TECHNIQUES 16 2.4.1 FRACTIONALLY-SPACED FFE 16 2.4.2 TRANSMISSION LINE 21 2.4.3 INDUCTOR 24 2.4.4 T-COIL 33 CHAPTER 3 DESIGN OF 48 GB/S PAM-4 ELECTRICAL TRANSMITTER IN 65 NM CMOS 43 3.1 OVERVIEW 43 3.2 FFE BASED ON DOUBLE-SHIELDED COPLANAR WAVEGUIDE 46 3.2.1 BASIC CONCEPT 46 3.2.2 PROPOSED DOUBLE-SHIELDED COPLANAR WAVEGUIDE 47 3.3 DESIGN CONSIDERATION ON 4:1 MUX 50 3.4 PROPOSED PAM-4 ELECTRICAL TRANSMITTER 53 3.5 MEASUREMENT 57 CHAPTER 4 DESIGN OF 64 GB/S PAM-4 OPTICAL TRANSMITTER IN 40 NM CMOS 64 4.1 OVERVIEW 64 4.2 DESIGN CONSIDERATION OF OPTICAL TRANSMITTER 66 4.3 PROPOSED PAM-4 VCSEL TRANSMITTER 69 4.4 MEASUREMENT 82 CHAPTER 5 CONCLUSIONS 88 BIBLIOGRAPHY 90 초 록 101박
    corecore