3,136 research outputs found

    Astrocomp: a web service for the use of high performance computers in Astrophysics

    Full text link
    Astrocomp is a joint project, developed by the INAF-Astrophysical Observatory of Catania, University of Roma La Sapienza and Enea. The project has the goal of providing the scientific community of a web-based user-friendly interface which allows running parallel codes on a set of high-performance computing (HPC) resources, without any need for specific knowledge about parallel programming and Operating Systems commands. Astrocomp provides, also, computing time on a set of parallel computing systems, available to the authorized user. At present, the portal makes a few codes available, among which: FLY, a cosmological code for studying three-dimensional collisionless self-gravitating systems with periodic boundary conditions; ATD, a parallel tree-code for the simulation of the dynamics of boundary-free collisional and collisionless self-gravitating systems and MARA, a code for stellar light curves analysis. Other codes are going to be added to the portal.Comment: LaTeX with elsart.cls and harvard.sty (included). 7 pages. To be submitted to a specific journa

    Direct Integration of the Collisionless Boltzmann Equation in Six-dimensional Phase Space: Self-gravitating Systems

    Full text link
    We present a scheme for numerical simulations of collisionless self-gravitating systems which directly integrates the Vlasov--Poisson equations in six-dimensional phase space. By the results from a suite of large-scale numerical simulations, we demonstrate that the present scheme can simulate collisionless self-gravitating systems properly. The integration scheme is based on the positive flux conservation method recently developed in plasma physics. We test the accuracy of our code by performing several test calculations including the stability of King spheres, the gravitational instability and the Landau damping. We show that the mass and the energy are accurately conserved for all the test cases we study. The results are in good agreement with linear theory predictions and/or analytic solutions. The distribution function keeps the property of positivity and remains non-oscillatory. The largest simulations are run on 64^6 grids. The computation speed scales well with the number of processors, and thus our code performs efficiently on massively parallel supercomputers.Comment: 35 pages, 19 figures. Submitted to the Astrophysical Journa

    Numerical Models of Binary Neutron Star System Mergers. I.: Numerical Methods and Equilibrium Data for Newtonian Models

    Get PDF
    The numerical modeling of binary neutron star mergers has become a subject of much interest in recent years. While a full and accurate model of this phenomenon would require the evolution of the equations of relativistic hydrodynamics along with the Einstein field equations, a qualitative study of the early stages on inspiral can be accomplished by either Newtonian or post-Newtonian models, which are more tractable. In this paper we offer a comparison of results from both rotating and non-rotating (inertial) frame Newtonian calculations. We find that the rotating frame calculations offer significantly improved accuracy as compared with the inertial frame models. Furthermore, we show that inertial frame models exhibit significant and erroneous angular momentum loss during the simulations that leads to an unphysical inspiral of the two neutron stars. We also examine the dependence of the models on initial conditions by considering initial configurations that consist of spherical neutron stars as well as stars that are in equilibrium and which are tidally distorted. We compare our models those of Rasio & Shapiro (1992,1994a) and New & Tohline (1997). Finally, we investigate the use of the isolated star approximation for the construction of initial data.Comment: 32 pages, 19 gif figures, manuscript with postscript figures available at http://www.astro.sunysb.edu/dswesty/docs/nspap1.p

    Turbulent Linewidths as a Diagnostic of Self-Gravity in Protostellar Discs

    Full text link
    We use smoothed particle hydrodynamics simulations of massive protostellar discs to investigate the predicted broadening of molecular lines from discs in which self-gravity is the dominant source of angular momentum transport. The simulations include radiative transfer, and span a range of disc-to-star mass ratios between 0.25 and 1.5. Subtracting off the mean azimuthal flow velocity, we compute the distribution of the in-plane and perpendicular peculiar velocity due to large scale structure and turbulence induced by self-gravity. For the lower mass discs, we show that the characteristic peculiar velocities scale with the square root of the effective turbulent viscosity parameter, as expected from local turbulent-disc theory. The derived velocities are anisotropic, with substantially larger in-plane than perpendicular values. As the disc mass is increased, the validity of the locally determined turbulence approximation breaks down, and this is accompanied by anomalously large in-plane broadening. There is also a high variance due to the importance of low-m spiral modes. For low-mass discs, the magnitude of in-plane broadening is, to leading order, equal to the predictions from local disc theory and cannot constrain the source of turbulence. However, combining our results with prior evaluations of turbulent broadening expected in discs where the magnetorotational instability (MRI) is active, we argue that self-gravity may be distinguishable from the MRI in these systems if it is possible to measure the anisotropy of the peculiar velocity field with disc inclination. Furthermore, for large mass discs, the dominant contribution of large-scale modes is a distinguishing characteristic of self-gravitating turbulence versus MRI driven turbulence.Comment: 8 pages, 13 figures, accepted for publication in MNRA

    High performance astrophysics computing

    Full text link
    The application of high end computing to astrophysical problems, mainly in the galactic environment, is under development since many years at the Dep. of Physics of Sapienza Univ. of Roma. The main scientific topic is the physics of self gravitating systems, whose specific subtopics are: i) celestial mechanics and interplanetary probe transfers in the solar system; ii) dynamics of globular clusters and of globular cluster systems in their parent galaxies; iii) nuclear clusters formation and evolution; iv) massive black hole formation and evolution; v) young star cluster early evolution. In this poster we describe the software and hardware computational resources available in our group and how we are developing both software and hardware to reach the scientific aims above itemized.Comment: 2 pages paper presented at the Conference "Advances in Computational Astrophysics: methods, tools and outcomes", to be published in the ASP Conference Series, 2012, vol. 453, R. Capuzzo-Dolcetta, M. Limongi and A. Tornambe' ed

    Spectral element modeling of three dimensional wave propagation in a self-gravitating Earth with an arbitrarily stratified outer core

    Get PDF
    This paper deals with the spectral element modeling of seismic wave propagation at the global scale. Two aspects relevant to low-frequency studies are particularly emphasized. First, the method is generalized beyond the Cowling approximation in order to fully account for the effects of self-gravitation. In particular, the perturbation of the gravity field outside the Earth is handled by a projection of the spectral element solution onto the basis of spherical harmonics. Second, we propose a new formulation inside the fluid which allows to account for an arbitrary density stratification. It is based upon a decomposition of the displacement into two scalar potentials, and results in a fully explicit fluid-solid coupling strategy. The implementation of the method is carefully detailed and its accuracy is demonstrated through a series of benchmark tests.Comment: Sent to Geophysical Journal International on July 29, 200
    • …
    corecore