61 research outputs found

    Developing a virtual reality environment for petrous bone surgery: a state-of-the-art review

    Get PDF
    The increasing power of computers has led to the development of sophisticated systems that aim to immerse the user in a virtual environment. The benefits of this type of approach to the training of physicians and surgeons are immediately apparent. Unfortunately the implementation of “virtual reality” (VR) surgical simulators has been restricted by both cost and technical limitations. The few successful systems use standardized scenarios, often derived from typical clinical data, to allow the rehearsal of procedures. In reality we would choose a system that allows us not only to practice typical cases but also to enter our own patient data and use it to define the virtual environment. In effect we want to re-write the scenario every time we use the environment and to ensure that its behavior exactly duplicates the behavior of the real tissue. If this can be achieved then VR systems can be used not only to train surgeons but also to rehearse individual procedures where variations in anatomy or pathology present specific surgical problems. The European Union has recently funded a multinational 3-year project (IERAPSI, Integrated Environment for Rehearsal and Planning of Surgical Interventions) to produce a virtual reality system for surgical training and for rehearsing individual procedures. Building the IERAPSI system will bring together a wide range of experts and combine the latest technologies to produce a true, patient specific virtual reality surgical simulator for petrous/temporal bone procedures. This article presents a review of the “state of the art” technologies currently available to construct a system of this type and an overview of the functionality and specifications such a system requires

    Advanced Visualization and Intuitive User Interface Systems for Biomedical Applications

    Get PDF
    Modern scientific research produces data at rates that far outpace our ability to comprehend and analyze it. Such sources include medical imaging data and computer simulations, where technological advancements and spatiotemporal resolution generate increasing amounts of data from each scan or simulation. A bottleneck has developed whereby medical professionals and researchers are unable to fully use the advanced information available to them. By integrating computer science, computer graphics, artistic ability and medical expertise, scientific visualization of medical data has become a new field of study. The objective of this thesis is to develop two visualization systems that use advanced visualization, natural user interface technologies and the large amount of biomedical data available to produce results that are of clinical utility and overcome the data bottleneck that has developed. Computational Fluid Dynamics (CFD) is a tool used to study the quantities associated with the movement of blood by computer simulation. We developed methods of processing spatiotemporal CFD data and displaying it in stereoscopic 3D with the ability to spatially navigate through the data. We used this method with two sets of display hardware: a full-scale visualization environment and a small-scale desktop system. The advanced display and data navigation abilities provide the user with the means to better understand the relationship between the vessel\u27s form and function. Low-cost 3D, depth-sensing cameras capture and process user body motion to recognize motions and gestures. Such devices allow users to use hand motions as an intuitive interface to computer applications. We developed algorithms to process and prepare the biomedical and scientific data for use with a custom control application. The application interprets user gestures as commands to a visualization tool and allows the user to control the visualization of multi-dimensional data. The intuitive interface allows the user to control the visualization of data without manual contact with an interaction device. In developing these methods and software tools we have leveraged recent trends in advanced visualization and intuitive interfaces in order to efficiently visualize biomedical data in such a way that provides meaningful information that can be used to further appreciate it

    Immersive design engineering

    Get PDF
    Design Engineering is an innovative field that usually combines a number of disciplines, such as material science, mechanics, electronics, and/or biochemistry, etc. New immersive technologies, such as Virtual Reality (VR) and Augmented Reality (AR), are currently in the process of being widely adapted in various engineering fields. It is a proven fact that the modeling of spatial structures is supported by immersive exploration. But the field of Design Engineering reaches beyond standard engineering tasks. With this review paper we want to achieve the following: define the term “Immersive Design Engineering”, discuss a number of recent immersive technologies in this context, and provide an inspiring overview of work that belongs to, or is related to the field of Immersive Design Engineering. Finally, the paper concludes with definitions of research questions as well as a number of suggestions for future developments

    Scalable multi-view stereo camera array for real world real-time image capture and three-dimensional displays

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, School of Architecture and Planning, Program in Media Arts and Sciences, 2004.Includes bibliographical references (leaves 71-75).The number of three-dimensional displays available is escalating and yet the capturing devices for multiple view content are focused on either single camera precision rigs that are limited to stationary objects or the use of synthetically created animations. In this work we will use the existence of inexpensive digital CMOS cameras to explore a multi- image capture paradigm and the gathering of real world real-time data of active and static scenes. The capturing system can be developed and employed for a wide range of applications such as portrait-based images for multi-view facial recognition systems, hypostereo surgical training systems, and stereo surveillance by unmanned aerial vehicles. The system will be adaptable to capturing the correct stereo views based on the environmental scene and the desired three-dimensional display. Several issues explored by the system will include image calibration, geometric correction, the possibility of object tracking, and transfer of the array technology into other image capturing systems. These features provide the user more freedom to interact with their specific 3-D content while allowing the computer to take on the difficult role of stereoscopic cinematographer.Samuel L. Hill.S.M

    Augmented Reality

    Get PDF
    Augmented Reality (AR) is a natural development from virtual reality (VR), which was developed several decades earlier. AR complements VR in many ways. Due to the advantages of the user being able to see both the real and virtual objects simultaneously, AR is far more intuitive, but it's not completely detached from human factors and other restrictions. AR doesn't consume as much time and effort in the applications because it's not required to construct the entire virtual scene and the environment. In this book, several new and emerging application areas of AR are presented and divided into three sections. The first section contains applications in outdoor and mobile AR, such as construction, restoration, security and surveillance. The second section deals with AR in medical, biological, and human bodies. The third and final section contains a number of new and useful applications in daily living and learning

    Proceedings of the Second PHANToM Users Group Workshop : October 19-22, 1997 : Endicott House, Dedham, MA, Massachusetts Institute of Technology, Cambridge, MA

    Get PDF
    "December, 1997." Cover title.Includes bibliographical references.Sponsored by SensAble Technologies, Inc., Cambridge, MA."[edited by J. Kennedy Salisbury and Mandayam A. Srinivasan]
    • …
    corecore