256 research outputs found

    Single-Precision and Double-Precision Merged Floating-Point Multiplication and Addition Units on FPGA

    Get PDF
    Floating-point (FP) operations defined in IEEE 754-2008 Standard for Floating-Point Arithmetic can provide wider dynamic range and higher precision than fixed-point operations. Many scientific computations and multimedia applications adopt FP operations. Among all the FP operations, addition and multiplication are the most frequent operations. In this thesis, the single-precision (SP) and double-precision (DP) merged FP multiplier and FP adder architectures are proposed. The proposed efficient iterative FP multiplier is designed based on the Karatsuba algorithm and implemented with the pipelined architecture. It can accomplish two parallel SP multiplication operations in one iteration with a latency of 6 clock cycles or one DP multiplication operation in two iterations with a latency of 9 clock cycles. Implemented on Xilinx Virtex-5 (xc5vlx155ff1760-3) FPGA device, the proposed multiplier runs at 348 MHz using 6 DSP48E blocks, 1117 LUTs, and 1370 FFs. Compared to previous FPGA based multiple-precision FP multiplier, the proposed designs runs at 4% faster clock frequency with reduction of 33% of DSP blocks, 17% latency for SP multiplication, and 28% latency for DP multiplication. The proposed high performance FP adder is designed based one the two-path FP addition algorithm. With fully pipelined architecture, the proposed adder can accomplish one DP or two parallel SP addition/subtraction operations in 6 clock cycles. The proposed adder architecture is implemented on both Altera and Xilinx 65nm process FPGA devices. The proposed adder can run up to 336 MHz with 1694 FFs, 1420 LUTs on Xilinx Virtex-5 (xc5vlx155ff1760-3) FPGA device. Compared to the combination of one DP and two SP architecture built with Xilinx FP operator, the proposed adder has 11.3% faster clock frequency. On Altera Stratix-III (EP3SL340F1760C2) FPGA device, the maximum clock frequency of the proposed adder can reach 358 MHz and 1686 ALUTs and 1556 registers are occupied. The proposed adder is 11.6% faster than the combination of one DP and two SP architecture built with Altera FP megafunction. For the reference of other researchers, the implementation results of the proposed FP multiplier and FP adder on the latest Xilinx Virtex-7 device and Altera Arria 10 device are also provided

    FPGA Implementation of Double Precision Floating Point Multiplier

    Get PDF
    High speed computation is the need of today’s generation of Processors.  To accomplish this major task,  many functions  are implemented  inside the hardware  of the processor rather than  having  software  computing  the  same  task. Majority of the operations which the processor executes are Arithmetic operations which are widely used in many applications that require heavy mathematical operations such as scientific calculations, image and signal processing. Especially in the field of signal processing, multiplication division operation is widely used in many applications. The major issue with these operations in hardware is that much iteration is required which results in slow operation while fast algorithms require complex computations within each cycle. The result of a Division operation results in a either  in Quotient  and  Remainder  or a Floating  point  number  which is the  major reason  to  make it  more complex than  Multiplication  operation

    Flexible Multiple-Precision Fused Arithmetic Units for Efficient Deep Learning Computation

    Get PDF
    Deep Learning has achieved great success in recent years. In many fields of applications, such as computer vision, biomedical analysis, and natural language processing, deep learning can achieve a performance that is even better than human-level. However, behind this superior performance is the expensive hardware cost required to implement deep learning operations. Deep learning operations are both computation intensive and memory intensive. Many research works in the literature focused on improving the efficiency of deep learning operations. In this thesis, special focus is put on improving deep learning computation and several efficient arithmetic unit architectures are proposed and optimized for deep learning computation. The contents of this thesis can be divided into three parts: (1) the optimization of general-purpose arithmetic units for deep learning computation; (2) the design of deep learning specific arithmetic units; (3) the optimization of deep learning computation using 3D memory architecture. Deep learning models are usually trained on graphics processing unit (GPU) and the computations are done with single-precision floating-point numbers. However, recent works proved that deep learning computation can be accomplished with low precision numbers. The half-precision numbers are becoming more and more popular in deep learning computation due to their lower hardware cost compared to the single-precision numbers. In conventional floating-point arithmetic units, single-precision and beyond are well supported to achieve a better precision. However, for deep learning computation, since the computations are intensive, low precision computation is desired to achieve better throughput. As the popularity of half-precision raises, half-precision operations are also need to be supported. Moreover, the deep learning computation contains many dot-product operations and therefore, the support of mixed-precision dot-product operations can be explored in a multiple-precision architecture. In this thesis, a multiple-precision fused multiply-add (FMA) architecture is proposed. It supports half/single/double/quadruple-precision FMA operations. In addition, it also supports 2-term mixed-precision dot-product operations. Compared to the conventional multiple-precision FMA architecture, the newly added half-precision support and mixed-precision dot-product only bring minor resource overhead. The proposed FMA can be used as general-purpose arithmetic unit. Due to the support of parallel half-precision computations and mixed-precision dot-product computations, it is especially suitable for deep learning computation. For the design of deep learning specific computation unit, more optimizations can be performed. First, a fixed-point and floating-point merged multiply-accumulate (MAC) unit is proposed. As deep learning computation can be accomplished with low precision number formats, the support of high precision floating-point operations can be eliminated. In this design, the half-precision floating-point format is supported to provide a large dynamic range to handle small gradients for deep learning training. For deep learning inference, 8-bit fixed-point 2-term dot-product computation is supported. Second, a flexible multiple-precision MAC unit architecture is proposed. The proposed MAC unit supports both fixed-point operations and floating-point operations. For floating-point format, the proposed unit supports one 16-bit MAC operation or sum of two 8-bit multiplications plus a 16-bit addend. To make the proposed MAC unit more versatile, the bit-width of exponent and mantissa can be flexibly exchanged. By setting the bit-width of exponent to zero, the proposed MAC unit also supports fixed-point operations. For fixed-point format, the proposed unit supports one 16-bit MAC or sum of two 8-bit multiplications plus a 16-bit addend. Moreover, the proposed unit can be further divided to support sum of four 4-bit multiplications plus a 16-bit addend. At the lowest precision, the proposed MAC unit supports accumulating of eight 1-bit logic AND operations to enable the support of binary neural networks. Finally, a MAC architecture based on the posit format, a promising numerical format in deep learning computation, is proposed to facilitate the use of posit format in deep learning computation. In addition to the above mention arithmetic units, an improved hybrid memory cube (HMC) architecture is proposed for weight-sharing deep neural network processing. By modifying the HMC instruction set and HMC logic layer, the major part of the deep learning computation can be accomplished inside memory. The proposed design reduces the memory bandwidth requirements and thus reduces the energy consumed by memory data transfer

    Design of efficient reversible floating-point arithmetic unit on field programmable gate array platform and its performance analysis

    Get PDF
    The reversible logic gates are used to improve the power dissipation in modern computer applications. The floating-point numbers with reversible features are added advantage to performing complex algorithms with high-performance computations. This manuscript implements an efficient reversible floating-point arithmetic (RFPA) unit, and its performance metrics are realized in detail. The RFP adder/subtractor (A/S), RFP multiplier, and RFP divider units are designed as a part of the RFP arithmetic unit. The RFPA unit is designed by considering basic reversible gates. The mantissa part of the RFP multiplier is created using a 24x24 Wallace tree multiplier. In contrast, the reciprocal unit of the RFP divider is designed using Newton Raphson’s method. The RFPA unit and its submodules are executed in parallel by utilizing one clock cycle individually. The RFPA unit and its submodules are synthesized separately on the Vivado IDE environment and obtained the implementation results on Artix-7 field programmable gate array (FPGA). The RFPA unit utilizes only 18.44% slice look-up tables (LUTs) by consuming the 0.891 W total power on Artix-7 FPGA. The RFPA unit sub-models are compared with existing approaches with better performance metrics and chip resource utilization improvements

    Hybrid FPGA: Architecture and Interface

    No full text
    Hybrid FPGAs (Field Programmable Gate Arrays) are composed of general-purpose logic resources with different granularities, together with domain-specific coarse-grained units. This thesis proposes a novel hybrid FPGA architecture with embedded coarse-grained Floating Point Units (FPUs) to improve the floating point capability of FPGAs. Based on the proposed hybrid FPGA architecture, we examine three aspects to optimise the speed and area for domain-specific applications. First, we examine the interface between large coarse-grained embedded blocks (EBs) and fine-grained elements in hybrid FPGAs. The interface includes parameters for varying: (1) aspect ratio of EBs, (2) position of the EBs in the FPGA, (3) I/O pins arrangement of EBs, (4) interconnect flexibility of EBs, and (5) location of additional embedded elements such as memory. Second, we examine the interconnect structure for hybrid FPGAs. We investigate how large and highdensity EBs affect the routing demand for hybrid FPGAs over a set of domain-specific applications. We then propose three routing optimisation methods to meet the additional routing demand introduced by large EBs: (1) identifying the best separation distance between EBs, (2) adding routing switches on EBs to increase routing flexibility, and (3) introducing wider channel width near the edge of EBs. We study and compare the trade-offs in delay, area and routability of these three optimisation methods. Finally, we employ common subgraph extraction to determine the number of floating point adders/subtractors, multipliers and wordblocks in the FPUs. The wordblocks include registers and can implement fixed point operations. We study the area, speed and utilisation trade-offs of the selected FPU subgraphs in a set of floating point benchmark circuits. We develop an optimised coarse-grained FPU, taking into account both architectural and system-level issues. Furthermore, we investigate the trade-offs between granularities and performance by composing small FPUs into a large FPU. The results of this thesis would help design a domain-specific hybrid FPGA to meet user requirements, by optimising for speed, area or a combination of speed and area

    High Performance Reconfigurable Computing for Linear Algebra: Design and Performance Analysis

    Get PDF
    Field Programmable Gate Arrays (FPGAs) enable powerful performance acceleration for scientific computations because of their intrinsic parallelism, pipeline ability, and flexible architecture. This dissertation explores the computational power of FPGAs for an important scientific application: linear algebra. First of all, optimized linear algebra subroutines are presented based on enhancements to both algorithms and hardware architectures. Compared to microprocessors, these routines achieve significant speedup. Second, computing with mixed-precision data on FPGAs is proposed for higher performance. Experimental analysis shows that mixed-precision algorithms on FPGAs can achieve the high performance of using lower-precision data while keeping higher-precision accuracy for finding solutions of linear equations. Third, an execution time model is built for reconfigurable computers (RC), which plays an important role in performance analysis and optimal resource utilization of FPGAs. The accuracy and efficiency of parallel computing performance models often depend on mean maximum computations. Despite significant prior work, there have been no sufficient mathematical tools for this important calculation. This work presents an Effective Mean Maximum Approximation method, which is more general, accurate, and efficient than previous methods. Together, these research results help address how to make linear algebra applications perform better on high performance reconfigurable computing architectures

    A model‐based design floating‐point accumulator. Case of study: FPGA implementation of a support vector machine kernel function

    Get PDF
    Recent research in wearable sensors have led to the development of an advanced platform capable of embedding complex algorithms such as machine learning algorithms, which are known to usually be resource‐demanding. To address the need for high computational power, one solution is to design custom hardware platforms dedicated to the specific application by exploiting, for example, Field Programmable Gate Array (FPGA). Recently, model‐based techniques and automatic code generation have been introduced in FPGA design. In this paper, a new model‐based floating‐point accumulation circuit is presented. The architecture is based on the state‐of‐the‐art delayed buffering algorithm. This circuit was conceived to be exploited in order to compute the kernel function of a support vector machine. The implementation of the proposed model was carried out in Simulink, and simulation results showed that it had better performance in terms of speed and occupied area when compared to other solutions. To better evaluate its figure, a practical case of a polynomial kernel function was considered. Simulink and VHDL post‐implementation timing simulations and measurements on FPGA confirmed the good results of the stand‐alone accumulator
    • 

    corecore