5,179 research outputs found

    Comparative study between sliding mode control and the vector control of a brushless doubly fed reluctance generator based on wind energy conversion systems

    Get PDF
    Introduction. Nowadays, global investment in renewable energy sources has been growing intensely. In particular, we mention here that wind source of energy has grown recently. Purpose. Comparative study between sliding mode control and vector control of a brushless doubly fed reluctance generator based on wind energy conversion systems. Methods. This paper deals with conceptual analysis and comparative study of two control techniques of a promising low-cost brushless doubly-fed reluctance generator for variable-speed wind turbine considering maximum power point tracking. This machine's growing interest because of the partially rated power electronics and the high reliability of the brushless design while offering performance competitive to its famous spring counterpart, the doubly-fed induction generator. We are particularly interested in comparing two kinds of control methods. We indicate here the direct vector control based on Proportional-Integral controller and sliding mode controller. Results. Simulation results show the optimized performances of the vector control strategy based on a sliding mode controller. We observe high performances in terms of response time and reference tracking without overshoots through the response characteristics. The decoupling, the stability, and the convergence towards the equilibrium are assured.Вступ. Нині глобальні інвестиції у відновлювані джерела енергії стрімко зростають. Зокрема, звернемо увагу, що останнім часом має місце зростання  вітряних джерел енергії. Мета. Порівняльне дослідження між управлінням ковзним режимом та векторним управлінням безщіткового реактивного генератора з подвійним живленням на основі систем перетворення енергії вітру. Методи. Стаття присвячена концептуальному аналізу та порівняльному дослідженню двох методів управління перспективним недорогим безщітковим реактивним генератором з подвійним живленням для вітряної турбіни зі змінною швидкістю з урахуванням відстеження точки максимальної потужності. Інтерес до цієї машини зростає частково завдяки силовій електроніці, а також високій надійності безщіткової конструкції, яка при цьому пропонує характеристики, порівняні з його загальновідомим пружинним аналогом, індукційним генератором з подвійним живленням. Автори особливо зацікавлені у порівнянні двох видів методів управління. Автори вказують тут на пряме векторне управління на основі пропорційно-інтегрального регулятора та регулятора ковзного режиму. Результати. Результати моделювання показують оптимізовані характеристики векторної стратегії управління на основі контролера ковзного режиму. Спостерігаються високі показники з точки зору часу відгуку та відстеження еталонних значень без перевищення показників відгуку. Розв'язка, стабільність та прагнення до рівноваги гарантуються

    Sensored and sensorless speed control methods for brushless doubly fed reluctance motors

    Get PDF
    The study considers aspects of scalar V/f control, vector control and direct torque (and flux) control (DTC) of the brushless doubly fed reluctance machine (BDFRM) as a promising cost-effective alternative to the existing technological solutions for applications with restricted variable speed capability such as large pumps and wind turbine generators. Apart from providing a comprehensive literature review and analysis of these control methods, the development and results of experimental verification, of an angular velocity observerbased DTC scheme for sensorless speed control of the BDFRM which, unlike most of the other DTC-concept applications, can perform well down to zero supply frequency of the inverter-fed winding, have also been presented in the study

    Flux observer algorithms for direct torque control of brushless doubly-fed reluctance machines

    Get PDF
    Direct Torque Control (DTC) has been extensively researched and applied to most AC machines during the last two decades. Its first application to the Brushless Doubly-Fed Reluctance Machine (BDFRM), a promising cost-effective candidate for drive and generator systems with limited variable speed ranges (such as large pumps or wind turbines), has only been reported a few years ago. However, the original DTC scheme has experienced flux estimation problems and compromised performance under the maximum torque per inverter ampere (MTPIA) conditions. This deficiency at low current and torque levels may be overcome and much higher accuracy achieved by alternative estimation approaches discussed in this paper using Kalman Filter (KF) and/or Sliding Mode Observer (SMO). Computer simulations accounting for real-time constraints (e.g. measurement noise, transducer DC offset etc.) have produced realistic results similar to those one would expect from an experimental setup

    Generator Systems for Marine Current Turbine Applications: A Comparative Study

    Get PDF
    Emerging technologies for marine current turbines are mainly related to works that have been carried out on wind turbines and ship propellers. It is then obvious that many electric generator topologies could be used for marine current turbines. As in the wind turbine context, doubly-fed induction generators and permanent magnet generators seem to be attractive solutions for harnessing the tidal current energy. In this paper, a comparative study between these two generator types is presented and fully analyzed in terms of generated power, maintenance, and operation constraints. This comparison is done for the Raz de Sein site (Brittany, France) using a multiphysics modeling simulation tool. This tool integrates, in a modular environment, the resource model, the turbine hydrodynamicmodel, and generator models. Experiments have also been carried out to confirm the simulation results.Financement de thèse de Brest Métropole Océan

    Small-Signal Modelling and Analysis of Doubly-Fed Induction Generators in Wind Power Applications

    Get PDF
    The worldwide demand for more diverse and greener energy supply has had a significant impact on the development of wind energy in the last decades. From 2 GW in 1990, the global installed capacity has now reached about 100 GW and is estimated to grow to 1000 GW by 2025. As wind power penetration increases, it is important to investigate its effect on the power system. Among the various technologies available for wind energy conversion, the doubly-fed induction generator (DFIG) is one of the preferred solutions because it offers the advantages of reduced mechanical stress and optimised power capture thanks to variable speed operation. This work presents the small-signal modelling and analysis of the DFIG for power system stability studies. This thesis starts by reviewing the mathematical models of wind turbines with DFIG convenient for power system studies. Different approaches proposed in the literature for the modelling of the turbine, drive-train, generator, rotor converter and external power system are discussed. It is shown that the flexibility of the drive train should be represented by a two-mass model in the presence of a gearbox. In the analysis part, the steady-state behaviour of the DFIG is examined. Comparison is made with the conventional synchronous generators (SG) and squirrel-cage induction generators to highlight the differences between the machines. The initialisation of the DFIG dynamic variables and other operating quantities is then discussed. Various methods are briefly reviewed and a step-by-step procedure is suggested to avoid the iterative computations in initial condition mentioned in the literature. The dynamical behaviour of the DFIG is studied with eigenvalue analysis. Modal analysis is performed for both open-loop and closed-loop situations. The effect of parameters and operating point variations on small signal stability is observed. For the open-loop DFIG, conditions on machine parameters are obtained to ensure stability of the system. For the closed-loop DFIG, it is shown that the generator electrical transients may be neglected once the converter controls are properly tuned. A tuning procedure is proposed and conditions on proportional gains are obtained for stable electrical dynamics. Finally, small-signal analysis of a multi-machine system with both SG and DFIG is performed. It is shown that there is no common mode to the two types of generators. The result confirms that the DFIG does not introduce negative damping to the system, however it is also shown that the overall effect of the DFIG on the power system stability depends on several structural factors and a general statement as to whether it improves or detriorates the oscillatory stability of a system can not be made

    DFIG versus PMSG for marine current turbine applications

    Get PDF
    Emerging technologies for marine current turbine are mainly relevant to works that have been carried out on wind turbines and ship propellers. It is then obvious that many electric generator topologies could be used for marine current turbines. As in the wind turbine context, doubly-fed induction generators and permanent magnet generators seems to be attractive solutions to be used to harness the tidal current energy. In this paper, a comparative study between these two generators type is presented and fully analyzed in terms of generated power, maintenance and operation constraints. This comparison is done for the Raz de Sein site (Brittany, France) using a multi physics modeling simulation tool. This tool integrates, in a modular environment, the resource model, the turbine hydrodynamic model and the generators models

    Influence of pole-pair combinations on the characteristics of the brushless doubly fed induction generator

    Get PDF
    The brushless doubly fed induction generator (BDFIG) is an alternative to the doubly fed induction generator (DFIG), widely used in wind turbines which avoids the need for brush gear and slip rings. The choice of pole numbers for the two stator windings present in the BDFIG sets the operating speed, typically in the medium speed range to eliminate a gearbox stage. This paper focuses on how both the total number of poles and the assignment of poles between the windings affect machine performance. Analytical expressions have been developed for parameters including pull-out torque, magnetizing current and back-iron depth. The results show that the pole count can be increased without unduly compromising pull-out torque and that in cases where more than one combination of pole number is acceptable only the back iron depth is significantly affected. In addition an output factor has been introduced to enable a direct comparison to be made with conventional DFIGs. The torque density of a brushless DFIG is compromised to a degree relative to a comparable DFIG as a consequence of the presence of two magnetic fields and finite element analysis is needed to achieve an optimized design. Finally, predictions of the performance of multi-MW machines are made based on data from an existing 250 kW machine which show that suitable efficiencies can be obtained and excessive control winding excitation can be avoided

    Predictive direct torque and flux control of doubly fed induction generator with switching frequency reduction for wind energy applications

    Full text link
    A model based predictive torque and flux control (PTFC) is proposed in this paper for doubly fed induction generator (DFIG) applied in wind energy applications. Different from the conventional switching-table-based direct torque control (DTC), which selects the output vector from a switching table, the developed PTFC selects the most suitable vector minimizing the errors of rotor flux and torque based on predictions of their evolutions versus time. Compared to DTC with the same sampling frequency, there are significant reductions in both torque and flux ripples for PTFC with lower switching frequency, while their dynamic performances are similar. Furthermore, by incorporating the frequency reduction in PTFC, the average switching frequency can be reduced up to 38.76% without affecting its performance. The results of PTFC operating at a very low switching frequency of below 550 Hz are presented, validating the capability of PTFC to satisfy the low switching frequency requirement of high power wind energy applications. Simulation results are presented to validate the effectiveness of the proposed PTFC. © 2011 IEEE
    corecore