495 research outputs found

    Metric based up-scaling

    Get PDF
    We consider divergence form elliptic operators in dimension n≥2n\geq 2 with L∞L^\infty coefficients. Although solutions of these operators are only H\"{o}lder continuous, we show that they are differentiable (C1,αC^{1,\alpha}) with respect to harmonic coordinates. It follows that numerical homogenization can be extended to situations where the medium has no ergodicity at small scales and is characterized by a continuum of scales by transferring a new metric in addition to traditional averaged (homogenized) quantities from subgrid scales into computational scales and error bounds can be given. This numerical homogenization method can also be used as a compression tool for differential operators.Comment: Final version. Accepted for publication in Communications on Pure and Applied Mathematics. Presented at CIMMS (March 2005), Socams 2005 (April), Oberwolfach, MPI Leipzig (May 2005), CIRM (July 2005). Higher resolution figures are available at http://www.acm.caltech.edu/~owhadi

    Bayesian Numerical Homogenization

    Get PDF
    Numerical homogenization, i.e. the finite-dimensional approximation of solution spaces of PDEs with arbitrary rough coefficients, requires the identification of accurate basis elements. These basis elements are oftentimes found after a laborious process of scientific investigation and plain guesswork. Can this identification problem be facilitated? Is there a general recipe/decision framework for guiding the design of basis elements? We suggest that the answer to the above questions could be positive based on the reformulation of numerical homogenization as a Bayesian Inference problem in which a given PDE with rough coefficients (or multi-scale operator) is excited with noise (random right hand side/source term) and one tries to estimate the value of the solution at a given point based on a finite number of observations. We apply this reformulation to the identification of bases for the numerical homogenization of arbitrary integro-differential equations and show that these bases have optimal recovery properties. In particular we show how Rough Polyharmonic Splines can be re-discovered as the optimal solution of a Gaussian filtering problem.Comment: 22 pages. To appear in SIAM Multiscale Modeling and Simulatio
    • …
    corecore