7,809 research outputs found

    Towards a Scalable Hardware/Software Co-Design Platform for Real-time Pedestrian Tracking Based on a ZYNQ-7000 Device

    Get PDF
    Currently, most designers face a daunting task to research different design flows and learn the intricacies of specific software from various manufacturers in hardware/software co-design. An urgent need of creating a scalable hardware/software co-design platform has become a key strategic element for developing hardware/software integrated systems. In this paper, we propose a new design flow for building a scalable co-design platform on FPGA-based system-on-chip. We employ an integrated approach to implement a histogram oriented gradients (HOG) and a support vector machine (SVM) classification on a programmable device for pedestrian tracking. Not only was hardware resource analysis reported, but the precision and success rates of pedestrian tracking on nine open access image data sets are also analysed. Finally, our proposed design flow can be used for any real-time image processingrelated products on programmable ZYNQ-based embedded systems, which benefits from a reduced design time and provide a scalable solution for embedded image processing products

    The AXIOM software layers

    Get PDF
    AXIOM project aims at developing a heterogeneous computing board (SMP-FPGA).The Software Layers developed at the AXIOM project are explained.OmpSs provides an easy way to execute heterogeneous codes in multiple cores. People and objects will soon share the same digital network for information exchange in a world named as the age of the cyber-physical systems. The general expectation is that people and systems will interact in real-time. This poses pressure onto systems design to support increasing demands on computational power, while keeping a low power envelop. Additionally, modular scaling and easy programmability are also important to ensure these systems to become widespread. The whole set of expectations impose scientific and technological challenges that need to be properly addressed.The AXIOM project (Agile, eXtensible, fast I/O Module) will research new hardware/software architectures for cyber-physical systems to meet such expectations. The technical approach aims at solving fundamental problems to enable easy programmability of heterogeneous multi-core multi-board systems. AXIOM proposes the use of the task-based OmpSs programming model, leveraging low-level communication interfaces provided by the hardware. Modular scalability will be possible thanks to a fast interconnect embedded into each module. To this aim, an innovative ARM and FPGA-based board will be designed, with enhanced capabilities for interfacing with the physical world. Its effectiveness will be demonstrated with key scenarios such as Smart Video-Surveillance and Smart Living/Home (domotics).Peer ReviewedPostprint (author's final draft

    ACE 16k based stand-alone system for real-time pre-processing tasks

    Get PDF
    This paper describes the design of a programmable stand-alone system for real time vision pre-processing tasks. The system's architecture has been implemented and tested using an ACE16k chip and a Xilinx xc4028xl FPGA. The ACE16k chip consists basically of an array of 128×128 identical mixed-signal processing units, locally interacting, which operate in accordance with single instruction multiple data (SIMD) computing architectures and has been designed for high speed image pre-processing tasks requiring moderate accuracy levels (7 bits). The input images are acquired using the optical input capabilities of the ACE16k chip, and after being processed according to a programmed algorithm, the images are represented at real time on a TFT screen. The system is designed to store and run different algorithms and to allow changes and improvements. Its main board includes a digital core, implemented on a Xilinx 4028 Series FPGA, which comprises a custom programmable Control Unit, a digital monochrome PAL video generator and an image memory selector. Video SRAM chips are included to store and access images processed by the ACE16k. Two daughter boards hold the program SRAM and a video DAC-mixer card is used to generate composite analog video signal.European Commission IST2001 – 38097Ministerio de Ciencia y Tecnología TIC2003 – 09817- C02 – 01Office of Naval Research (USA) N00014021088

    Document Classification Systems in Heterogeneous Computing Environments

    Get PDF
    Datacenter workloads demand high throughput, low cost and power efficient solutions. In most data centers the operating costs dominates the infrastructure cost. The ever growing amounts of data and the critical need for higher throughput, more energy efficient document classification solutions motivated us to investigate alternatives to the traditional homogeneous CPU based implementations of document classification systems. Several heterogeneous systems were investigated in the past where CPUs were combined with GPUs and FPGAs as system accelerators. The increasing complexity of FPGAs made them an interesting device in the heterogeneous computing environments and on the other hand difficult to program using Hardware Description languages. We explore the trade-offs when using high level synthesis and low level synthesis when programming FPGAs. Using low level synthesis results in less hardware resource usage on FPGAs and also offers the higher throughput compared to using HLS tool. While using HLS tool different heterogeneous computing devices such as multicore CPU and GPU targeted. Through our implementation experience and empirical results for data centric applications, we conclude that we can achieve power efficient results for these set of applications by either using low level synthesis or high level synthesis for programming FPGAs

    An Efficient and Cost Effective FPGA Based Implementation of the Viola-Jones Face Detection Algorithm

    Get PDF
    We present an field programmable gate arrays (FPGA) based implementation of the popular Viola-Jones face detection algorithm, which is an essential building block in many applications such as video surveillance and tracking. Our implementation is a complete system level hardware design described in a hardware description language and validated on the affordable DE2-115 evaluation board. Our primary objective is to study the achievable performance with a low-end FPGA chip based implementation. In addition, we release to the public domain the entire project. We hope that this will enable other researchers to easily replicate and compare their results to ours and that it will encourage and facilitate further research and educational ideas in the areas of image processing, computer vision, and advanced digital design and FPGA prototyping

    A high speed Tri-Vision system for automotive applications

    Get PDF
    Purpose: Cameras are excellent ways of non-invasively monitoring the interior and exterior of vehicles. In particular, high speed stereovision and multivision systems are important for transport applications such as driver eye tracking or collision avoidance. This paper addresses the synchronisation problem which arises when multivision camera systems are used to capture the high speed motion common in such applications. Methods: An experimental, high-speed tri-vision camera system intended for real-time driver eye-blink and saccade measurement was designed, developed, implemented and tested using prototype, ultra-high dynamic range, automotive-grade image sensors specifically developed by E2V (formerly Atmel) Grenoble SA as part of the European FP6 project – sensation (advanced sensor development for attention stress, vigilance and sleep/wakefulness monitoring). Results : The developed system can sustain frame rates of 59.8 Hz at the full stereovision resolution of 1280 × 480 but this can reach 750 Hz when a 10 k pixel Region of Interest (ROI) is used, with a maximum global shutter speed of 1/48000 s and a shutter efficiency of 99.7%. The data can be reliably transmitted uncompressed over standard copper Camera-Link® cables over 5 metres. The synchronisation error between the left and right stereo images is less than 100 ps and this has been verified both electrically and optically. Synchronisation is automatically established at boot-up and maintained during resolution changes. A third camera in the set can be configured independently. The dynamic range of the 10bit sensors exceeds 123 dB with a spectral sensitivity extending well into the infra-red range. Conclusion: The system was subjected to a comprehensive testing protocol, which confirms that the salient requirements for the driver monitoring application are adequately met and in some respects, exceeded. The synchronisation technique presented may also benefit several other automotive stereovision applications including near and far-field obstacle detection and collision avoidance, road condition monitoring and others.Partially funded by the EU FP6 through the IST-507231 SENSATION project.peer-reviewe
    corecore