25,876 research outputs found

    If physics is an information science, what is an observer?

    Full text link
    Interpretations of quantum theory have traditionally assumed a "Galilean" observer, a bare "point of view" implemented physically by a quantum system. This paper investigates the consequences of replacing such an informationally-impoverished observer with an observer that satisfies the requirements of classical automata theory, i.e. an observer that encodes sufficient prior information to identify the system being observed and recognize its acceptable states. It shows that with reasonable assumptions about the physical dynamics of information channels, the observations recorded by such an observer will display the typical characteristics predicted by quantum theory, without requiring any specific assumptions about the observer's physical implementation.Comment: 30 pages, comments welcome; v2 significant revisions - results unchange

    The identification and exploitation of almost symmetry in planning problems

    Get PDF
    Previous work in symmetry detection for planning has identified symmetries between domain objects and shown how the exploitation of this information can help reduce search at plan time. However these methods are unable to detect symmetries between objects that are almost symmetrical: where the objects must start (or end) in slightly different configurations but for much of the plan their behaviour is equivalent. In the paper we outline a method for identifying such symmetries and discuss how this symmetry information can be positively exploited to help direct search during planning we have implemented this method and integrated it with the FF-v2.3 planner and in the paper we present results of experiments with this approach that demonstrate its potential

    Anonymizing Social Graphs via Uncertainty Semantics

    Full text link
    Rather than anonymizing social graphs by generalizing them to super nodes/edges or adding/removing nodes and edges to satisfy given privacy parameters, recent methods exploit the semantics of uncertain graphs to achieve privacy protection of participating entities and their relationship. These techniques anonymize a deterministic graph by converting it into an uncertain form. In this paper, we propose a generalized obfuscation model based on uncertain adjacency matrices that keep expected node degrees equal to those in the unanonymized graph. We analyze two recently proposed schemes and show their fitting into the model. We also point out disadvantages in each method and present several elegant techniques to fill the gap between them. Finally, to support fair comparisons, we develop a new tradeoff quantifying framework by leveraging the concept of incorrectness in location privacy research. Experiments on large social graphs demonstrate the effectiveness of our schemes

    Orthogonal Wavelets via Filter Banks: Theory and Applications

    Get PDF
    Wavelets are used in many applications, including image processing, signal analysis and seismology. The critical problem is the representation of a signal using a small number of computable functions, such that it is represented in a concise and computationally efficient form. It is shown that wavelets are closely related to filter banks (sub band filtering) and that there is a direct analogy between multiresolution analysis in continuous time and a filter bank in discrete time. This provides a clear physical interpretation of the approximation and detail spaces of multiresolution analysis in terms of the frequency bands of a signal. Only orthogonal wavelets, which are derived from orthogonal filter banks, are discussed. Several examples and applications are considered

    Quantum-circuit guide to optical and atomic interferometry

    Full text link
    Atomic (qubit) and optical or microwave (modal) phase-estimation protocols are placed on the same footing in terms of quantum-circuit diagrams. Circuit equivalences are used to demonstrate the equivalence of protocols that achieve the Heisenberg limit by employing entangled superpositions of Fock states, such as N00N states. The key equivalences are those that disentangle a circuit so that phase information is written exclusively on a mode or modes or on a qubit. The Fock-state-superposition phase-estimation circuits are converted to use entangled coherent-state superpositions; the resulting protocols are more amenable to realization in the lab, particularly in a qubit/cavity setting at microwave frequencies.Comment: To appear in Optics Communications special issue in memory of Krzysztof Wodkiewic

    Local and global gravity

    Full text link
    Our long experience with Newtonian potentials has inured us to the view that gravity only produces local effects. In this paper we challenge this quite deeply ingrained notion and explicitly identify some intrinsically global gravitational effects. In particular we show that the global cosmological Hubble flow can actually modify the motions of stars and gas within individual galaxies, and even do so in a way which can apparently eliminate the need for galactic dark matter. Also we show that a classical light wave acquires an observable, global, path dependent phase in traversing a gravitational field. Both of these effects serve to underscore the intrinsic difference between non-relativistic and relativistic gravity.Comment: LaTeX, 20 pages plus three figures in two postscript files. To appear in a special issue of Foundations of Physics honoring Professor Lawrence Horwitz on the occasion of his 65th birthday; A. van der Merwe and S. Raby, Editors, Plenum Publishing Company, N.Y., 199

    Stabilisation of Quantum Computations by Symmetrisation

    Get PDF
    We propose a method for the stabilisation of quantum computations (including quantum state storage). The method is based on the operation of projection into SYM\cal SYM, the symmetric subspace of the full state space of RR redundant copies of the computer. We describe an efficient algorithm and quantum network effecting SYM\cal SYM--projection and discuss the stabilising effect of the proposed method in the context of unitary errors generated by hardware imprecision, and nonunitary errors arising from external environmental interaction. Finally, limitations of the method are discussed.Comment: 20 pages LaTeX, 2 postscript figure

    Two-Domain DNA Strand Displacement

    Full text link
    We investigate the computing power of a restricted class of DNA strand displacement structures: those that are made of double strands with nicks (interruptions) in the top strand. To preserve this structural invariant, we impose restrictions on the single strands they interact with: we consider only two-domain single strands consisting of one toehold domain and one recognition domain. We study fork and join signal-processing gates based on these structures, and we show that these systems are amenable to formalization and to mechanical verification
    corecore